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1. Executive Summary 
This deliverable presents the work carried out between months 7 and 29 in the context 
of Task 2.2 of WP2, defined as the “Integration of Spark and COMPSs programming 
models into a unified programming environment”. The work presented in this 
deliverable contributes to MS3.  

More precisely, this deliverable describes the final release of the Spark and COMPSs 
integration. We have achieved this integration by building the Distributed Dataset 
(DDS) structure on top of COMPSs. DDS is currently available for the Python 
programming language, and provides a very similar API to PySpark’s Resilient 
Distributed Datasets (RDD). In this manner, many PySpark applications can be 
executed in PyCOMPSs by just replacing PySpark’s RDD module for PyCOMPSs’ DDS. 
In Python, this module can be changed at run time programmatically, which means 
that the execution framework can be defined as a configuration parameter. This 
enables the dynamic execution of applications both in PySpark and in PyCOMPSs 
without any changes in the source code. 

This deliverable gives an overview of the implementation of PyCOMPSs DDS, and 
reports the changes and improvements with respect to the first integration release 
reported in D2.3 [1]. Furthermore, the currently available methods are listed, and 
detailed usage instructions are provided. This deliverable documents the successful 
accomplishment of the objectives set in MS3 regarding Task 2.2. 

2. Design and implementation 
We have implemented the DDS as an integral part of the PyCOMPSs package and 
included it in the regular PyCOMPSs installation. This means that DDS can be used in 
any PyCOMPSs application by just importing the 'pycompss.dds' module. In this way, 
DDS calls can be inserted at any point in the application workflow, mixed with calls to 
user-defined tasks.   

PySpark's RDD provides two types of methods: transformations and actions. 
Respecting the lazy evaluation optimization technique, PySpark does not execute 
transformations immediately; instead, PySpark evaluates a sequence of 
transformation methods only when an action method is called. This avoids data 
transfers between nodes, as the whole sequence of transformations can be scheduled 
at once. With the latest version of DDS, we fully replicate this behavior by calling data 
loader methods and combined transformations within a single task right before an 
action method is called. Thus, compared with the previous version, the new DDS 
avoids intermediate data transfers amongst transformation tasks. Consequently, data 
transfers between nodes only occur when one of the action methods is called, or when 
the computed result is ready to be 'collected' in the main node. Additionally, since 
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multiple tasks are combined into one, the runtime overhead of managing multiple 
small tasks has been reduced.  

Similar to PySpark's RDD, we implemented most of DDS' functionality through the 
'map_partitions' method. This method runs one or more transformation functions 
on each data partition in parallel by creating a number of tasks equal to the number 
of partitions. The execution of these tasks is triggered when the 'collect' action is 
called. Using a single method like 'map_partitions' for most parallel 
computations avoids code replication and eases the development of new methods.  

Moreover, the latest DDS library comes with a new interface named 
'PartitionGenerator'. This interface is the key point for the loading (reading) of 
the data within the 'map_partitions' tasks. When the user calls one of the data loader 
functions, the data is not processed nor read immediately. Instead, DDS creates 
‘PartitionGenerator' objects per partition, which hold all the necessary 
information for the partition such as the data source, the number of the partition, etc. 
Initial partitioning is done by slicing the iterables based on the total number of 
partitions defined by the user. As in PySpark, partitioning can be considered partially 
dymanic, since the user can change the number of total partitioning when calling some 
DDS methods. Then, when one of the ‘task’ methods is called, these objects load only 
the data they are responsible for, and apply the DDS operations. Thanks to the 
'DataLoader' objects that implement the 'PartitionGenerator' interface, 
PyCOMPSs tasks can read the data and immediately execute combined 
transformations in parallel, without using extra intermediate serializations.  

Figure 1 shows the task graphs of Word Count using the first and the second versions 
of DDS for a small data set, corresponding to plots (a) and (b), respectively. Word 
Count is a simple Map-Reduce program that contains several 'map' and 'reduce' 
phases. It is worth mentioning that similar to RDD's reduce, DDS' reduce method 
applies an accumulative and commutative function to a DDS to obtain a single result.  
Besides, in the case of DDS, the user can define the number of inputs for 'reduce' tasks, 
thus allowing to control the total number of reduce tasks as well as data granularity. 

In the graphs of Figure 1, nodes represent tasks, and edges represent data 
dependencies between them. We see that the first version of DDS created one task to 
read the data (blue nodes), and two tasks for the transformation processes which 
parse and count the results locally (white nodes). In contrast to this, the second 
version of DDS optimizes the workflow by combining and executing the first three 
tasks in a single one (blue nodes). Considering the expensive serialization and 
deserialization of big python objects, this approach significantly increases the speed 
of the second version of DDS. 
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(a) Word Count application task graph with first release of DDS. 

 

 

(b) Word Count application task graph with the second release of DDS. 

Figure 1 – Task graphs of Word Count implemented with two different versions of 
DDS. We observe that, in the second version, reading from files and two 
transformation phases take place within a single ‘map_partition’ task. 
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3. List of available methods 
In the following, we list and briefly describe the currently available DDS operators. This 
release of DDS has adapted and included the most common methods Spark RDD. 
However, some additional methods could be easily added in the future, if needed for 
specific data analytics functions.  

• load() – equivalent of the ‘paralellize()’ method of PySpark Context. 
Builds a DDS object from a given iterator (e.g., a list) and a given number of 
partitions. During the creation of the DDS object, the input object is divided in 
partitions, and data is distributed among workers. If the number of partitions 
is not provided, ‘load()’ creates 10 partitions by default. If the number of 
partitions is -1, ‘load()’assumes that the iterator contains PyCOMPSs ‘Future 
Objects’, and skips the data distribution process. This helps to pass results from 
other user-defined PyCOMPSs tasks to DDS without synchronisation on the 
master node. 

• load_file() – builds a DDS from an input file. The input file is read in chunks 
of specific size in bytes, and contents of the file are stored as Strings. The 
‘load_file’ operator implements two reading modes: master-read and worker-
read. In master-read, the file is opened and partitioned at the master node. In 
worker-read, the file is opened and loaded in tasks that run in worker nodes. 
In master-read mode, the file is opened only once, while in worker-read mode 
the partitioning is carried out in parallel. The most efficient mode depends on 
the use case. 

• load_text_file()– equivalent of ‘textFile’ method of PySpark 
Context. In DDS this method is the same as ‘load_file’, with only difference that 
the input file is partitioned in lines instead of bytes. 

• load_files_from_dir() – reads multiple files from a given directory and 
creates a DDS of (key, value) tuples where keys are file names, and values are 
the file contents stored as a String. The number of partitions of the output DDS 
is defined by the user. Partitions can contain the contents of more than one 
file if the number of given partitions is lower than the number of files.  

• load_pickle_files() – loads serialized partitions form ‘pickle’ files and 
automatically creates one partition per file. 

• collect() – returns the contents of a DDS. The normal behavior of the 
‘collect’ method is to synchronize and return the actual contents of the DDS. 
Nevertheless, ‘collect’ also might return a list of future objects if specified by 
the user. This can be useful to run user-defined tasks that take partitions as 
input parameters. Since the return value is a list containing all elements of the 
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DDS, should only be called when the resulting array expected to be small 
enough to fit in the driver's memory. 

>> DDS().load( range (3) ).collect() 

[0, 1, 2, 3] 

• save_as_text_file() – saves string representations of the DDS elements 
by creating one file per partition. 

• save_as_pickle() – serializes each partition by ‘pickle’ module and saves 
them in a given directory. Serialized partitions can be loaded onto another DDS 
object by using ‘load_pickle_files’ method later. 

• map() –applies a given function to each element of the DDS, and replaces the 
old value with the result.  
>> DDS().load( range (10) ).map( lambda x: x * 2).collect() 

[0, 2, 4, 6, 8 ,10 ,12, 14, 16, 18] 

• map_and_flatten() – similar to ‘map’, applies a function to each element 
of the DDS. However, this function needs to return an ‘iterable’ object. Then, 
each element of the output ‘iterable’ is converted to an element of the output 
DDS. This operation is equilvalent to PySpark’s ‘flatMap’. 

>> DDS().load( [“First String”, “Second String”]  )\ 

  .map_and_flatten( lambda x: x.split() ).collect() 

[‘First’, ‘String’, ‘Second’, ‘String’] 

• map_partitions() – applies a given function to each partition of the DDS.  

• filter() –applies a given function to each element of the DDS, and removes 
the element from the DDS if the the applied function returns ‘False’. 

• distinct() – removes repeated elements in the DDS. The number of 
partitions is kept as initial and final elements are distributed proportionally. 

>> DDS().load( [“First String”, “Second String”]  )\ 

  .map_and_flatten( lambda x: x.split() ).distinct().collect() 

[‘First’, ‘String’, ‘Second’] 

• reduce() – applies a function to subsets of DDS elements until a single value 
remains. The ‘reduce’ operator first reduces elements in each partition 
independently, and then reduces the remaining values in a tree-like structure. 
The user can specify the arity of this structure, and an initial reduction value. 

>> DDS().load( range (10) ).reduce( (lambda a, b: a + b), initial = 100) 

145 
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• min() / max() / sum() / count() – some self-explanatory functions 
that walk through all elements of the DDS and return a single value. 

• foreach() – applies a function to each element of the DDS without returning 
any value. The ‘foreach’ operator includes a barrier to make sure that all the 
tasks finish the execution. 

• union() – combines the current DDS with an arbitrary amount of other DDS 
objects.  

>> first = DDS().load([0, 1, 2, 3, 4], 2) 

>> second = DDS().load([5, 6, 7, 8, 9], 3) 

>> first.union(second).count() 

10 

• key_by() – creates (key, value) pairs from DDS data, where keys are 
generated by applying a given ‘f’ function to the elements, that is, key = 
f(element).  

>> DDS().load( range (3) ).key_by( lambda x: str(x) ).collect() 

[( ‘0’, 0), (‘1’, 1), (‘2’, 2)] 

• partition_by() – creates partitions based on a user-defined function. It 
gives the flexibility to the user to control the data granularity. 

• map_values() – keeping the ‘keys’ as they are, it applies a given function to 
the ‘values’ of each element in the DDS where elements are considered to be 
(key, value) pairs. 

• reduce_by_key() – similar to ‘reduce’, but elements of the DDS are 
considered to be (key, value) tuples. 

• count_by_value() – returns the total count of keys per value in a DDS object 
where elements are in a (key, value) format.  
>> first = DDS().load([0, 1, 2], 2) 

>> second = DDS().load([2, 3, 4], 3) 

>> first.union(second).count_by_value(as_dict=True) 

{0: 1, 1: 1, 2: 2, 3: 1, 4: 1}  

• combine_by_key() – combines ‘values’ for each key based on a user-defined 
function, where each element of the DDS is represented as a ‘(key, value)’ pair. 

• flatten_by_key() – the reverse of ‘combine_by_key’. Given elements 
in (key, value) format where the ‘value’ is an iterable object, it creates multiple 
pairs for each element. 
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• sort_by_key() – sorts elements of the DDS by their key values where all the 
elements considered to be in a (key, value) format. The user can define his or 
her sorting function and the number of partitions to be created after sorting.  

4.  Performance 
We have been testing the DDS performance since the first release, and there are some 
considerable improvements in the last version. All the experimental applications have 
been executed on MareNostrum 4 supercomputer of BSC with the various number of 
nodes/cores (each MareNostrum 4 node accounts for 48 cores). Two different 
applications have been tested, namely the WordCount and the Terasort algorithms.To 
evaluate the performance of the WordCount application, we have parsed and counted 
the words from multiple text files, generated through the Lorem Ipsum library with a 
total size of 213 GB. Table 1 presents the results of the first release of DDS, PySpark 
(with Spark version 2.3.2), and latest DDS version implementations of Word Count 
application. 

Table 1 – WordCount execution times 

# of Worker Nodes / 
#cores 

1/48 2/96 4/192 8/384 16/768 

 Time Elapsed (sec) 

DDS 1  800.27 381.47 196.97 100 

DDS 2 130.78 67.97 37.09 23.94 14.7 

PySpark (v. 2.3.2) 328.48 186.28 129 88.02 65.79 

 

 

Figure 2 – Comparison of WordCount execution time with DDS 1, DDS 2, and PySpark 

Figure 2 illustrates the results from Table 1. We observe that the latest version of DDS 
has the best performance, independently from the number of nodes, especially when 
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compared to the old version of DDS. The main reason for this improvement is the 
reduction of expensive intermediate tasks, as mentioned before.  

As a second example, we have tested the TeraSort program, which serves in 
benchmarks to sort 1 Terabyte of data represented by key-value pairs. The DDS 
implementation of this program can be found in the last section, along with other 
examples. Table 2 shows the results from the executions of the program to sort 95 GB 
of data with multiple numbers of nodes. 

Table 2 – TeraSort execution times 

# of Worker Nodes / 
#cores 

1/48 2/96 4/192 8/384 

 Time Elapsed (sec) 

DDS 1 4364 1845 1033 2986 

DDS 2 2127 989 434 262 

PySpark (v 2.3.2) 1312 1320 521 331 

 

 

Figure 3 – Comparison of TeraSort execution time with DDS 1, DDS 2, and PySpark 

Figure 3 visualizes the results from Table 2. It is clearly seen that the current version 
of DDS has reduced the execution time compared to the old version, and also has 
slightly better performance than PySpark, except for the single-node execution. 

5. Usage instructions 
As said before, DDS is distributed as part of PyCOMPSs (version 2.4 and above), and 
does not require the installation of additional packages. Users can test the DDS using 
PyCOMPSs Player package 1 available on PyPI.  

                                                             
1 https://pypi.org/project/pycompss-player/ 
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The following steps show how to execute the WordCount application: 

1. Install docker for python (if not already installed): 

python3 -m pip install docker 

2. Install pycompss-player using pip: 

python3 -m pip install pycompss-player 

3. Insert some text in a file named ‘book.txt’ using vim. 
4. Create a ‘wordcount.py’ file with the following code: 

from pycompss.dds import DDS 

def main(): 

results = DDS().load_text_file( ‘book.txt’ ) \ 

.map_and_flatten(lambda x: x.split()) \ 

.count_by_value(True) 

print (results) 

if __name__ == “__main__”: 

 main() 

5. Run the application using run command of pycompss: 

pycompss run wordcount.py 
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6. Examples 
The following code snippets show some example applications from public repository2 
that are implemented using DDS: 

TeraSort: 

from pycompss.dds import DDS 

def fi les_to_pairs(element): 

    “””” helper function to parse fi les ””” 

    tuples = l ist() 

    l ines = element[1].split("\n") 

    for _l in l ines: 

        k_v = _l.split(",") 

        tuples.append(tuple(k_v))  

    return tuples 

 

def terasort():  

    dir_path = sys.argv[1] 

    dest_path = sys.argv[2] 

    start_time = time.time() 

    dds = DDS().load_files_from_dir(dir_path)\ 

        .map_and_flatten(files_to_pairs)\ 

        .sort_by_key().save_as_text_file(dest_path) 

Pi estimation: 

from pycompss.dds import DDS 

def inside(_): 

    “”” helper function to ‘throw the dart’ “”” 

    import random 

    x, y = random.random(), random.random() 

    if (x * x) + (y * y) < 1: 

        return True 

def pi_estimation(): 

    print("Estimating Pi by 'throwing darts' algorithm.") 

                                                             
2https://github.com/bsc-wdc/compss/tree/stable/compss/prog ramming_model/ bindings/python/src/pycompss/dds 
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    tries = 100000  

    count = DDS().load(range(0, tries), 10) \ 

        .fi lter(inside).count() 

    print("Pi is roughly %f" % (4.0 * count / tries)) 

Inverted Indexing: 

from pycompss.dds import DDS 

def _invert_files(pair): 

    “”” helper function to parse fi les””” 

    res = dict() 

    for word in pair[1].split(): 

        res[word] = [pair[0]] 

    return l ist(res.items()) 

 

def inverted_indexing():  

    path = sys.argv[1] 

    result = DDS().load_files_from_dir(path).map_and_flatten(_invert_files)\ 

        .reduce_by_key(lambda a, b: a + b).collect() 

 

7. Final remark 
 

Originally, CLASS intended to unify task-based and map-reduce models into a single 
parallel programming model, i.e., COMPSs, as presented in this deliverable. However, 
CLASS also initiated an exploration path into serverless paradigm. 

 In that regard, the CLASS project was one of the first EU projects to explore and 
promote the new serverless paradigm as a novel, elegant and efficient way to develop 
and execute software at scale in a heterogeneous distributed environment, such as 
the cloud-to-edge compute continuum. An open-source serverless platform of Apache 
OpenWhisk was chosen as the foundation for CLASS analytics, allowing developers to 
easily compose software that consists of multiple analytics frameworks that could 
collaborate over the serverless platform's protocol. From a project design perspective, 
CLASS is about event-driven programming, which is the natural computation model 
for serverless. Thus, serverless proved as a excellent fit for CLASS goals, with event 
response leveraged in the use-cases and edge analytics implementation via 
federation. 
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As a result, CLASS decided to replace Spark for the Lithops map-reduce engine 
(formerly known as PyWren), which actually executes the computation using 
serverless functions, exploiting additional valuable benefits of serverless. One is that 
computation is completely elastic for all data scales, allowing to leverage all platform 
resources with no development cost using the built-in auto-scaling. Another benefit is 
that multiple analytics computations can run concurrently and share the resources via 
the underlying global serverless scheduler. Lithops was used in the core components 
of Trajectory Prediction (TP) and Collision Detection (CD) and proved quite adequate, 
as reported in Deliverable D5.5, “Evaluation of CLASS Big-Data Analytics Layer”. On the 
same note, we also learned of limitations of serverless platforms, such as stateless-
ness, preset scheduler, and high on-demand overhead of initialization and finalization. 
The lessons have been published in the BDVA and HiPEAC panels, and greatly 
motivated the creation of the EXPRESS asset. 

Finally, the consortium decided to maintain the activity of integrating Spark and 
COMPSs into a single programming framework as reported in this deliverable. The 
efforts required for use-case implementation where however shifted to serverless 
activities. This is why this deliverable only performs the evaluation on benchmarks not 
related to use-cases. 

 

Acronyms and Abbreviations 
- D – deliverable  
- DDS – Distributed Dataset 
- M – Month 
- MS – Milestones 
- RDD – Resilient Distributed Datasets 
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