

D2.5 – Final release of Spark and COMPSs
integrated in CLASS architecture

Version 1.1

Document Information
Contract Number 780622

Project Website https://class-project.eu/

Contractual Deadline
M29, May 2020

(Due to COVID situation this deliverable has been
submitted on M31, July 2020)

Dissemination Level PU

Nature Demonstrator

Author(s) Nihad Mammadli (BSC); Javier Álvarez (BSC)

Contributor(s) Rosa M. Badia (BSC)

Reviewer(s) Erez Hadad (IBM); Elli Kartsakli (BSC)

Keywords integration, pyspark, pycompss, execution
framework

Notices: The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
“780622”.

 2018 CLASS Consortium Partners. All rights reserved.

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

2

Change Log

Version Author Description of Change

0.1 Nihad Mammadli and Javier
Álvarez (BSC)

Initial Draft

0.2 Rosa M Badia Revision

0.3 Erez Hadad (IBM) Revision

0.4 Nihad Mammadli Review comments addressed

1.0 Elli Kartsakli (BSC) Final Version, Ready to EC revision

1.1 BSC Addressing EC requirements
(28/10/2021)

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

3

Table of contents
1. Executive Summary...4

2. Design and implementation ..4

3. List of available methods ...7

4. Performance ... 10

5. Usage instructions... 11

6. Examples .. 13

7. Final remark.. 14

Acronyms and Abbreviations .. 15

References... 15

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

4

1. Executive Summary
This deliverable presents the work carried out between months 7 and 29 in the context
of Task 2.2 of WP2, defined as the “Integration of Spark and COMPSs programming
models into a unified programming environment”. The work presented in this
deliverable contributes to MS3.

More precisely, this deliverable describes the final release of the Spark and COMPSs
integration. We have achieved this integration by building the Distributed Dataset
(DDS) structure on top of COMPSs. DDS is currently available for the Python
programming language, and provides a very similar API to PySpark’s Resilient
Distributed Datasets (RDD). In this manner, many PySpark applications can be
executed in PyCOMPSs by just replacing PySpark’s RDD module for PyCOMPSs’ DDS.
In Python, this module can be changed at run time programmatically, which means
that the execution framework can be defined as a configuration parameter. This
enables the dynamic execution of applications both in PySpark and in PyCOMPSs
without any changes in the source code.

This deliverable gives an overview of the implementation of PyCOMPSs DDS, and
reports the changes and improvements with respect to the first integration release
reported in D2.3 [1]. Furthermore, the currently available methods are listed, and
detailed usage instructions are provided. This deliverable documents the successful
accomplishment of the objectives set in MS3 regarding Task 2.2.

2. Design and implementation
We have implemented the DDS as an integral part of the PyCOMPSs package and
included it in the regular PyCOMPSs installation. This means that DDS can be used in
any PyCOMPSs application by just importing the 'pycompss.dds' module. In this way,
DDS calls can be inserted at any point in the application workflow, mixed with calls to
user-defined tasks.

PySpark's RDD provides two types of methods: transformations and actions.
Respecting the lazy evaluation optimization technique, PySpark does not execute
transformations immediately; instead, PySpark evaluates a sequence of
transformation methods only when an action method is called. This avoids data
transfers between nodes, as the whole sequence of transformations can be scheduled
at once. With the latest version of DDS, we fully replicate this behavior by calling data
loader methods and combined transformations within a single task right before an
action method is called. Thus, compared with the previous version, the new DDS
avoids intermediate data transfers amongst transformation tasks. Consequently, data
transfers between nodes only occur when one of the action methods is called, or when
the computed result is ready to be 'collected' in the main node. Additionally, since

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

5

multiple tasks are combined into one, the runtime overhead of managing multiple
small tasks has been reduced.

Similar to PySpark's RDD, we implemented most of DDS' functionality through the
'map_partitions' method. This method runs one or more transformation functions
on each data partition in parallel by creating a number of tasks equal to the number
of partitions. The execution of these tasks is triggered when the 'collect' action is
called. Using a single method like 'map_partitions' for most parallel
computations avoids code replication and eases the development of new methods.

Moreover, the latest DDS library comes with a new interface named
'PartitionGenerator'. This interface is the key point for the loading (reading) of
the data within the 'map_partitions' tasks. When the user calls one of the data loader
functions, the data is not processed nor read immediately. Instead, DDS creates
‘PartitionGenerator' objects per partition, which hold all the necessary
information for the partition such as the data source, the number of the partition, etc.
Initial partitioning is done by slicing the iterables based on the total number of
partitions defined by the user. As in PySpark, partitioning can be considered partially
dymanic, since the user can change the number of total partitioning when calling some
DDS methods. Then, when one of the ‘task’ methods is called, these objects load only
the data they are responsible for, and apply the DDS operations. Thanks to the
'DataLoader' objects that implement the 'PartitionGenerator' interface,
PyCOMPSs tasks can read the data and immediately execute combined
transformations in parallel, without using extra intermediate serializations.

Figure 1 shows the task graphs of Word Count using the first and the second versions
of DDS for a small data set, corresponding to plots (a) and (b), respectively. Word
Count is a simple Map-Reduce program that contains several 'map' and 'reduce'
phases. It is worth mentioning that similar to RDD's reduce, DDS' reduce method
applies an accumulative and commutative function to a DDS to obtain a single result.
Besides, in the case of DDS, the user can define the number of inputs for 'reduce' tasks,
thus allowing to control the total number of reduce tasks as well as data granularity.

In the graphs of Figure 1, nodes represent tasks, and edges represent data
dependencies between them. We see that the first version of DDS created one task to
read the data (blue nodes), and two tasks for the transformation processes which
parse and count the results locally (white nodes). In contrast to this, the second
version of DDS optimizes the workflow by combining and executing the first three
tasks in a single one (blue nodes). Considering the expensive serialization and
deserialization of big python objects, this approach significantly increases the speed
of the second version of DDS.

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

6

(a) Word Count application task graph with first release of DDS.

(b) Word Count application task graph with the second release of DDS.

Figure 1 – Task graphs of Word Count implemented with two different versions of
DDS. We observe that, in the second version, reading from files and two
transformation phases take place within a single ‘map_partition’ task.

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

7

3. List of available methods
In the following, we list and briefly describe the currently available DDS operators. This
release of DDS has adapted and included the most common methods Spark RDD.
However, some additional methods could be easily added in the future, if needed for
specific data analytics functions.

• load() – equivalent of the ‘paralellize()’ method of PySpark Context.
Builds a DDS object from a given iterator (e.g., a list) and a given number of
partitions. During the creation of the DDS object, the input object is divided in
partitions, and data is distributed among workers. If the number of partitions
is not provided, ‘load()’ creates 10 partitions by default. If the number of
partitions is -1, ‘load()’assumes that the iterator contains PyCOMPSs ‘Future
Objects’, and skips the data distribution process. This helps to pass results from
other user-defined PyCOMPSs tasks to DDS without synchronisation on the
master node.

• load_file() – builds a DDS from an input file. The input file is read in chunks
of specific size in bytes, and contents of the file are stored as Strings. The
‘load_file’ operator implements two reading modes: master-read and worker-
read. In master-read, the file is opened and partitioned at the master node. In
worker-read, the file is opened and loaded in tasks that run in worker nodes.
In master-read mode, the file is opened only once, while in worker-read mode
the partitioning is carried out in parallel. The most efficient mode depends on
the use case.

• load_text_file()– equivalent of ‘textFile’ method of PySpark
Context. In DDS this method is the same as ‘load_file’, with only difference that
the input file is partitioned in lines instead of bytes.

• load_files_from_dir() – reads multiple files from a given directory and
creates a DDS of (key, value) tuples where keys are file names, and values are
the file contents stored as a String. The number of partitions of the output DDS
is defined by the user. Partitions can contain the contents of more than one
file if the number of given partitions is lower than the number of files.

• load_pickle_files() – loads serialized partitions form ‘pickle’ files and
automatically creates one partition per file.

• collect() – returns the contents of a DDS. The normal behavior of the
‘collect’ method is to synchronize and return the actual contents of the DDS.
Nevertheless, ‘collect’ also might return a list of future objects if specified by
the user. This can be useful to run user-defined tasks that take partitions as
input parameters. Since the return value is a list containing all elements of the

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

8

DDS, should only be called when the resulting array expected to be small
enough to fit in the driver's memory.

>> DDS().load(range (3)).collect()

[0, 1, 2, 3]

• save_as_text_file() – saves string representations of the DDS elements
by creating one file per partition.

• save_as_pickle() – serializes each partition by ‘pickle’ module and saves
them in a given directory. Serialized partitions can be loaded onto another DDS
object by using ‘load_pickle_files’ method later.

• map() –applies a given function to each element of the DDS, and replaces the
old value with the result.
>> DDS().load(range (10)).map(lambda x: x * 2).collect()

[0, 2, 4, 6, 8 ,10 ,12, 14, 16, 18]

• map_and_flatten() – similar to ‘map’, applies a function to each element
of the DDS. However, this function needs to return an ‘iterable’ object. Then,
each element of the output ‘iterable’ is converted to an element of the output
DDS. This operation is equilvalent to PySpark’s ‘flatMap’.

>> DDS().load([“First String”, “Second String”])\

 .map_and_flatten(lambda x: x.split()).collect()

[‘First’, ‘String’, ‘Second’, ‘String’]

• map_partitions() – applies a given function to each partition of the DDS.

• filter() –applies a given function to each element of the DDS, and removes
the element from the DDS if the the applied function returns ‘False’.

• distinct() – removes repeated elements in the DDS. The number of
partitions is kept as initial and final elements are distributed proportionally.

>> DDS().load([“First String”, “Second String”])\

 .map_and_flatten(lambda x: x.split()).distinct().collect()

[‘First’, ‘String’, ‘Second’]

• reduce() – applies a function to subsets of DDS elements until a single value
remains. The ‘reduce’ operator first reduces elements in each partition
independently, and then reduces the remaining values in a tree-like structure.
The user can specify the arity of this structure, and an initial reduction value.

>> DDS().load(range (10)).reduce((lambda a, b: a + b), initial = 100)

145

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

9

• min() / max() / sum() / count() – some self-explanatory functions
that walk through all elements of the DDS and return a single value.

• foreach() – applies a function to each element of the DDS without returning
any value. The ‘foreach’ operator includes a barrier to make sure that all the
tasks finish the execution.

• union() – combines the current DDS with an arbitrary amount of other DDS
objects.

>> first = DDS().load([0, 1, 2, 3, 4], 2)

>> second = DDS().load([5, 6, 7, 8, 9], 3)

>> first.union(second).count()

10

• key_by() – creates (key, value) pairs from DDS data, where keys are
generated by applying a given ‘f’ function to the elements, that is, key =
f(element).

>> DDS().load(range (3)).key_by(lambda x: str(x)).collect()

[(‘0’, 0), (‘1’, 1), (‘2’, 2)]

• partition_by() – creates partitions based on a user-defined function. It
gives the flexibility to the user to control the data granularity.

• map_values() – keeping the ‘keys’ as they are, it applies a given function to
the ‘values’ of each element in the DDS where elements are considered to be
(key, value) pairs.

• reduce_by_key() – similar to ‘reduce’, but elements of the DDS are
considered to be (key, value) tuples.

• count_by_value() – returns the total count of keys per value in a DDS object
where elements are in a (key, value) format.
>> first = DDS().load([0, 1, 2], 2)

>> second = DDS().load([2, 3, 4], 3)

>> first.union(second).count_by_value(as_dict=True)

{0: 1, 1: 1, 2: 2, 3: 1, 4: 1}

• combine_by_key() – combines ‘values’ for each key based on a user-defined
function, where each element of the DDS is represented as a ‘(key, value)’ pair.

• flatten_by_key() – the reverse of ‘combine_by_key’. Given elements
in (key, value) format where the ‘value’ is an iterable object, it creates multiple
pairs for each element.

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

10

• sort_by_key() – sorts elements of the DDS by their key values where all the
elements considered to be in a (key, value) format. The user can define his or
her sorting function and the number of partitions to be created after sorting.

4. Performance
We have been testing the DDS performance since the first release, and there are some
considerable improvements in the last version. All the experimental applications have
been executed on MareNostrum 4 supercomputer of BSC with the various number of
nodes/cores (each MareNostrum 4 node accounts for 48 cores). Two different
applications have been tested, namely the WordCount and the Terasort algorithms.To
evaluate the performance of the WordCount application, we have parsed and counted
the words from multiple text files, generated through the Lorem Ipsum library with a
total size of 213 GB. Table 1 presents the results of the first release of DDS, PySpark
(with Spark version 2.3.2), and latest DDS version implementations of Word Count
application.

Table 1 – WordCount execution times

of Worker Nodes /
#cores

1/48 2/96 4/192 8/384 16/768

 Time Elapsed (sec)

DDS 1 800.27 381.47 196.97 100

DDS 2 130.78 67.97 37.09 23.94 14.7

PySpark (v. 2.3.2) 328.48 186.28 129 88.02 65.79

Figure 2 – Comparison of WordCount execution time with DDS 1, DDS 2, and PySpark

Figure 2 illustrates the results from Table 1. We observe that the latest version of DDS
has the best performance, independently from the number of nodes, especially when

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

11

compared to the old version of DDS. The main reason for this improvement is the
reduction of expensive intermediate tasks, as mentioned before.

As a second example, we have tested the TeraSort program, which serves in
benchmarks to sort 1 Terabyte of data represented by key-value pairs. The DDS
implementation of this program can be found in the last section, along with other
examples. Table 2 shows the results from the executions of the program to sort 95 GB
of data with multiple numbers of nodes.

Table 2 – TeraSort execution times

of Worker Nodes /
#cores

1/48 2/96 4/192 8/384

 Time Elapsed (sec)

DDS 1 4364 1845 1033 2986

DDS 2 2127 989 434 262

PySpark (v 2.3.2) 1312 1320 521 331

Figure 3 – Comparison of TeraSort execution time with DDS 1, DDS 2, and PySpark

Figure 3 visualizes the results from Table 2. It is clearly seen that the current version
of DDS has reduced the execution time compared to the old version, and also has
slightly better performance than PySpark, except for the single-node execution.

5. Usage instructions
As said before, DDS is distributed as part of PyCOMPSs (version 2.4 and above), and
does not require the installation of additional packages. Users can test the DDS using
PyCOMPSs Player package 1 available on PyPI.

1 https://pypi.org/project/pycompss-player/

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

12

The following steps show how to execute the WordCount application:

1. Install docker for python (if not already installed):

python3 -m pip install docker

2. Install pycompss-player using pip:

python3 -m pip install pycompss-player

3. Insert some text in a file named ‘book.txt’ using vim.
4. Create a ‘wordcount.py’ file with the following code:

from pycompss.dds import DDS

def main():

results = DDS().load_text_file(‘book.txt’) \

.map_and_flatten(lambda x: x.split()) \

.count_by_value(True)

print (results)

if __name__ == “__main__”:

 main()

5. Run the application using run command of pycompss:

pycompss run wordcount.py

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

13

6. Examples
The following code snippets show some example applications from public repository2
that are implemented using DDS:

TeraSort:

from pycompss.dds import DDS

def fi les_to_pairs(element):

 “””” helper function to parse fi les ”””

 tuples = l ist()

 l ines = element[1].split("\n")

 for _l in l ines:

 k_v = _l.split(",")

 tuples.append(tuple(k_v))

 return tuples

def terasort():

 dir_path = sys.argv[1]

 dest_path = sys.argv[2]

 start_time = time.time()

 dds = DDS().load_files_from_dir(dir_path)\

 .map_and_flatten(files_to_pairs)\

 .sort_by_key().save_as_text_file(dest_path)

Pi estimation:

from pycompss.dds import DDS

def inside(_):

 “”” helper function to ‘throw the dart’ “””

 import random

 x, y = random.random(), random.random()

 if (x * x) + (y * y) < 1:

 return True

def pi_estimation():

 print("Estimating Pi by 'throwing darts' algorithm.")

2https://github.com/bsc-wdc/compss/tree/stable/compss/prog ramming_model/ bindings/python/src/pycompss/dds

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

14

 tries = 100000

 count = DDS().load(range(0, tries), 10) \

 .fi lter(inside).count()

 print("Pi is roughly %f" % (4.0 * count / tries))

Inverted Indexing:

from pycompss.dds import DDS

def _invert_files(pair):

 “”” helper function to parse fi les”””

 res = dict()

 for word in pair[1].split():

 res[word] = [pair[0]]

 return l ist(res.items())

def inverted_indexing():

 path = sys.argv[1]

 result = DDS().load_files_from_dir(path).map_and_flatten(_invert_files)\

 .reduce_by_key(lambda a, b: a + b).collect()

7. Final remark

Originally, CLASS intended to unify task-based and map-reduce models into a single
parallel programming model, i.e., COMPSs, as presented in this deliverable. However,
CLASS also initiated an exploration path into serverless paradigm.

 In that regard, the CLASS project was one of the first EU projects to explore and
promote the new serverless paradigm as a novel, elegant and efficient way to develop
and execute software at scale in a heterogeneous distributed environment, such as
the cloud-to-edge compute continuum. An open-source serverless platform of Apache
OpenWhisk was chosen as the foundation for CLASS analytics, allowing developers to
easily compose software that consists of multiple analytics frameworks that could
collaborate over the serverless platform's protocol. From a project design perspective,
CLASS is about event-driven programming, which is the natural computation model
for serverless. Thus, serverless proved as a excellent fit for CLASS goals, with event
response leveraged in the use-cases and edge analytics implementation via
federation.

D2.5 – Final release of Spark and COMPSs integrated in CLASS architecture
Version 1.1

15

As a result, CLASS decided to replace Spark for the Lithops map-reduce engine
(formerly known as PyWren), which actually executes the computation using
serverless functions, exploiting additional valuable benefits of serverless. One is that
computation is completely elastic for all data scales, allowing to leverage all platform
resources with no development cost using the built-in auto-scaling. Another benefit is
that multiple analytics computations can run concurrently and share the resources via
the underlying global serverless scheduler. Lithops was used in the core components
of Trajectory Prediction (TP) and Collision Detection (CD) and proved quite adequate,
as reported in Deliverable D5.5, “Evaluation of CLASS Big-Data Analytics Layer”. On the
same note, we also learned of limitations of serverless platforms, such as stateless-
ness, preset scheduler, and high on-demand overhead of initialization and finalization.
The lessons have been published in the BDVA and HiPEAC panels, and greatly
motivated the creation of the EXPRESS asset.

Finally, the consortium decided to maintain the activity of integrating Spark and
COMPSs into a single programming framework as reported in this deliverable. The
efforts required for use-case implementation where however shifted to serverless
activities. This is why this deliverable only performs the evaluation on benchmarks not
related to use-cases.

Acronyms and Abbreviations
- D – deliverable
- DDS – Distributed Dataset
- M – Month
- MS – Milestones
- RDD – Resilient Distributed Datasets

References

[1] CLASS, “D2.3 - First release of Spark and COMPSs integration,” March 2019.

	1. Executive Summary
	2. Design and implementation
	3. List of available methods
	4. Performance
	5. Usage instructions
	6. Examples
	7. Final remark
	Acronyms and Abbreviations
	References

