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1 Introduction
Task 3.3. “Real-time analysis methods and tools on the edge”. This task has

developed, in collaboration with Task 3.2, the set of real-time analysis techniques

deployed at both development (static) and execution (dynamic) time that will

guarantee the responsiveness of big data analytics on the edge. At development

time, these techniques will statically assign computing resources on the edge

(e.g., CPU time, cores, accelerators time) to guarantee time predictability while

ensuring the right level of performance. At execution time, this task will provide

analysis tools (in the form of schedulability test) capable of dynamically adjusting

the execution for improving performance while providing time predictable level.

The target at MS2 is the static real-time analysis tools implemented at the edge.

To do that a novel model of real-time task called HPC-DAG (Heterogeneous

Parallel Conditional Directed Acyclic Graph) is presented in Section 2. Thanks

to the graph structure, the HPC-DAG model allows specifying the degree of

parallelism of real-time sub-tasks. The designer can use special alternative nodes
in the graph to model alternative implementations of the same functionality on

different computing engines to be selected off-line, and conditional nodes in
the graph to model if-then-else branches to be selected at run-time. Alternative

nodes are used to leverage the diversity of computing accelerators within our

target platform.

Then, in Section 3 we present a schedulability analysis that will be used in

Section 4 by a set of allocation heuristics to map tasks on computing platforms

and to assign scheduling parameters. In particular, we present a novel tech-

nique to reduce the pessimism due to high preemption costs in the analysis

(Section 3.6).

After discussing related work in Section 5, our methodology is evaluated

in Section 6 by comparing it with state-of-the-art algorithms through a set of

synthetic experiments.

2 Systemmodel
2.1 Architecture model
A heterogeneous architecture is modeled as a set of execution engines Arch =
{e1, e2, . . . , em}. An execution engine is characterized by 1) its execution capabili-
ties, (i.e. its Instruction Set Architecture), specified by the engine’s tag, and 2) its
scheduling policy. An engine’s tag tag(ei) indicates the ability of a processor to
execute a dedicated tasks.

As an example, a Xavier based platform such as the NVIDIA pegasus that will
be installed in the CLASS cars, can be modeled using a total of 16 engines for a
total of five different engine tags: 8 CPUs, 2 dGPUs, 2 iGPUs, 2 DLAs and 2 PVAs.
Tags express the heterogeneity of modern processor architecture: an engine

tagged by dGPU (discrete GPU) or iGPU (integrated GPU) is designed to efficiently

run generic GPU kernels, whereas engines with DLA tags are designed to run

deep learning inference tasks.
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Trivially, a deep learning task can be compiled to run on any engine, includ-

ing CPUs and GPUs, however its worst-case execution time will be lower when

running on DLAs. In this work, we allow the designer to compile the same task

on different alternative engines with different tradeoffs in terms of performance

and resource utilization, so to widen the space of possible solutions. As we will

see in the next section, the HPC-DAG model supports alternative implementa-
tions of the same code. During the off-line analysis phase, only one of these

alternative versions will be chosen depending on the overall schedulability of

the system.

Communication is an important issue when considering the execution of

real-time tasks on heterogeneous architectures. In modern GPUs, data transfers

are performed by special engines called copy engines. A copy engine is a co-
processor in charge of moving data between an address space visible to the CPU

to an address space visible to the GPU. This translates in two physical separate

memory devices in case of discrete GPUs, whereas for integrated GPUs system

RAM is shared among both CPU cores and compute accellerators. We treat copy

engines as processing units in which we schedule communication tasks.
Engines are further characterized by a scheduling policy (e.g. Fixed Priority

or Earliest Deadline First), which can be preemptive or non-preemptive. In our
model we allow different engines to support different scheduling policies: as

we show in Section 3, in our methodology the schedulability analysis of each

engine can be performed independently of the others. However, to simplify

the presentation, in this deliverable we focus only on preemptive EDF for all the
considered engines for now, but we plan to include other scheduling strategies

for the final release.

2.2 The HPC-DAG task model
2.2.1 Specification tasks
A specification task is a Directed Acyclic Graph (DAG), characterized by a tuple
τ = {T,D,V,A,Γ, E}, where: T is the period (minimum interarrival time); D is
the relative deadline; V is a set of graph nodes that represent sub-tasks; A is
a set of alternative nodes; and Γ is a set of conditional nodes. The set of all the
nodes is denoted byN = V ∪ A ∪ Γ. The set E is the set of edges of the graph
E : N ×N .
A sub-task v ∈ V is the basic computation unit. It represents a block of

code to be executed by one of the engines of the architecture. A sub-task is

characterized by:

• A tag tag(v) represent the ISA of the sub-task code. A sub-task can only be
allocate onto an engine with the same tag;

• A worst-case execution time C(v) when executing the sub-task on the
corresponding engine processor.

In this work, we do not model the parallelization inside the GPU. We model

a GPU node as a single sub-task able to potentially exploit all the computing
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parallel resources of the GPU’s execution engine. This is compliant with what

have been disclosed with regards to the NVIDIA GPU application scheduler [6] [7]

that assumes only one GPU context being resident within the GPU at a given time.

As an example, if the GPU node is an image processing workload, parallelization

is exploited at the level of pixels of the image and not by processing multiple

images at the same time instant.

A conditional node γ ∈ Γ represents alternative paths in the graph due to
non-deterministic on-line conditions (e.g. if-then-else conditions). At run-time,

only one of the outgoing edges of γ is executed, but it is not possible to know in
advance which one.

An alternative node a ∈ A represents alternative implementations of parts of
the graph/task, as introduced in the previous section. During the configuration

phase (which is detailed in Section 4.1) our methodology selects one between

many possible alternative implementations of the program by selecting only one

of the outgoing edges of a and removing (part of) the paths starting from the
other edges. This can be useful when modeling sub-tasks than can be executed

on different engines with different execution costs. In our model, the choice of

where the sub-task should be executed is performed off-line by our proposed

scheduling analysis and allocation strategy.

An edge e(ni, nj) ∈ E models a precedence constraint (and related com-
munication) between node ni and node nj , where ni and nj can be sub-tasks,
alternative nodes or conditional nodes.

The set of immediate predecessors of a node nj , denoted by pred(nj), is the
set of all nodes ni such that there exists an edge (ni, nj). The set of predecessors
of a node nj is the set of all nodes for which there exist a path toward nj . If a
node has no predecessor, it is a source node of the graph. In our model we allow
a graph to have several source nodes. In the same way we can define the set of

immediate successors of node nj , denoted by succ(nj), as the set of all nodes nk
such that there exists an edge (nj, nk), and the set of successors of nj as the set
of nodes for which there is a path from nj . If a node has no successors, it is a
sink node of the graph, and we allow a graph to have several sink nodes.
Conditional nodes and alternative nodes always have at least 2 outgoing

edges, so they cannot be sinks. To simplify the reasoning, we also assume that

they always have at least one predecessor node, so they cannot be sources.

2.2.2 Concrete tasks
A concrete task τ = {T,D,V,Γ, E} is an instance of a specification task where all
alternatives have been removed by making implementation choices during the

analysis. In the following, the volume vol(τ) denotes the total cumulative WCET
of the concrete task. It is computed in linear time in the number of conditional

vertices [3].

Before explaining how to obtain a concrete task from a specification task, we

present an example.

Example 1. Consider the task specification described in Figure 1a. Each sub-task
node is labeled by the sub-task id and engine tag. Alternative nodes are denoted
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by square boxes and conditional nodes are denoted by diamond boxes. The black
boxes denote corresponding junction nodes for alternatives and conditional, they
are used to improve the readability of the figure but they are not part of the task
specification1.

vCPU
1 vCPU

2

A

F

vdGPU
3

vDLA
4

vdGPU
5

vCPU
8

F

F

vDLA
6 vdGPU

7

(a)

vCPU
1 vCPU

2

F

vCPU
8

F

vDLA
6 vdGPU

7

(b)

Figure 1: Task specification and concrete tasks

Sub-tasks vCPU1 and vCPU2 are the sources (entry points) of the DAG. vCPU1 , vCPU2

are marked by the CPU tag and can run cuncurrently: during the off-line analysis
they may be allocated on the same or onto different engines. Sub-task vDLA

4 has
an outgoing edge to vdGPU5 , thus sub-task vdCPU5 can not start its execution before
sub-task vDLA

4 has finished its execution. Sub-tasks vCPU1 and vCPU2 have each one
outgoing edge to the alternative node A. Thus, τ can execute either:
1. By following vdGPU3 and then vDLA

4 ,vdGPU5 and finishing its instance on vCPU8 ;
2. Or by following the conditional node F and select, according to an unde-
termined condition evaluated on-line, either to execute vDLA

6 or vdGPU7 , and
finishing its instance on vCPU8 .

The two patterns are alternative ways to execute the same functionalities at
different costs.
Figure 1b represents one of the concrete tasks of τi. During the analysis, alterna-

tive execution (vdGPU3 , vDLA4 , vdGPU5 ) has been dropped.
In our model, data transfers between tasks can be modeled by special sub-

tasks tagged with tag CP (Copy-Engine).
We consider a sporadic task model, therefore parameter T represents the

minimum inter-arrival times between two instances of the same concrete task.

When an instance of a task is activated at time t, all source sub-tasks are simul-
taneously activated. All subsequent sub-tasks are activated upon completion

of their predecessors, and sink sub-tasks must all complete no later than time

t+ D. We assume constrained deadline tasks, that is D ≤ T.
We now present a procedure to generate a concrete task τ from a specifi-

cation task τ , when all alternatives have been chosen. The procedure starts by
initializing V = ∅, Γ = ∅. First, all the source sub-tasks of τ are added to V. Then,

1
In fact, it is not always possible to insert junction nodes for an arbitrary specification.

7



D3.4 First release of the real-time analysis methods and tools on the edge

Version 1.0

for every immediate successor node nj of a node ni ∈ {V ∪Γ}: if nj is a sub-task
node (a conditional node, respectively), it is added to V (to Γ, respectively); if it is
an alternative node, we consider the selected immediate successor nk of nj and
we add it to V or to Γ, respectively. The procedure is iterated until all nodes of τ
have been visited. The set of edges E ⊆ E is updated accordingly.
We denote by Ω(τ) the set of all concrete tasks of a specification task τ . Ω(τ)

is generated by simply enumerating all possible alternatives.

3 Scheduling analysis
In this work, we consider partitioned scheduling. Each engine has its own sched-

uler and a separate ready-queue. Sub-tasks are allocated (partitioned) onto

the available engines so that the system is schedulable. Partitioned scheduling

allows to use well-known single processor schedulability tests which make the

analysis simpler and allow us to reduce the overhead due to thread migration

compared to global scheduling. The analysis presented here is modular, so

engines may have different scheduling policies. As already stated begore, we

restrict to preemptive-EDF for now but the analysis can be done with any other

scheduling policy.

3.1 Alternative patterns
Given a specification task τ , we have to select one of the possible concrete
tasks before proceeding to the allocation and scheduling of the sub-tasks on

the computing engine. Since the number of combinations can be very large, in

this work we propose an heuristic algorithm based on a greedy strategy (see
Section 4). In particular, we explore the set of concrete tasks in a certain order.

The order relation � sorts concrete tasks according to their total execution time.

Definition 1. Let τ′, τ′′ be two concrete tasks of specification task τ
The partial order relation � is defined as:

τ′ � τ′′ =⇒ vol(τ ′) ≥ vol(τ ′′) (1)

In the next section, we will define a second order relationship� that sorts
concrete tasks based on their engine tags.

3.2 Tagged Tasks
One concrete task may contain sub-tasks with different tags which will be allo-

cated on different engines. Before proceeding to allocation, we need to select

only sub-tasks pertaining to a given tag. We call this operation task filtering.
We start by defining an empty sub-task as a sub-task with null computation

time.

Definition 2 (Tagged task). Let τ = {T,D,V,Γ, E} be a concrete task. Task τ(tagi)
is a tagged task of τ iff
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• τ(tagi) = {T,D,Vi,Γi, Ei} is isomorphic to τ , that is the graph has the same
structure, the same number of nodes of the same type, and the same edges
between corresponding nodes;
• let v ∈ V be a sub-task of τ , and let v′ ∈ Vi be the corresponding sub-task
of τ(tagi) in the isomorphism. If tag(v) = tagi, then C(v′) = C(v), else
C(v′) = 0;
• Γi = Γ.

We denote with S(τ) = {τ(tag1), . . . τ(tagK)} the set of all possible tagged tasks of
τ .
Each concrete task generates as many tagged tasks as there are tags in the

target architecture.

vCPU
1 vCPU

2

F

vCPU
8

F

∅ ∅

∅ ∅

F

∅

F

vDLA
6 ∅

∅ ∅

F

∅

F

∅ vdGPU
7

Figure 2: Tagged tasks for the concrete task of Figure

Figure 2 shows the three tagged tasks for the concrete task in Figure 1b. The

first one contains only sub-tasks having CPU tag, the second contains only DLA

sub-tasks, and the third one refers to GPU sub-tasks. Every tagged task will be

allocated on one or more engines having the corresponding tag.

Definition 3 (� order relationship). Assume the architecture supportsK different
tags. Let n(tag) denote the number of computing engines labeled with tag. Assume
that tags are ordered by increasing n(tag), that is n(tagi) < n(tagj) =⇒ i < j.
Let τ′, τ′′ be two concrete tasks of specification task τ, and let S(τ ′) = {τ ′(tag1), . . . , τ ′(tagK)}

and S(τ ′′) = {τ ′′(tag1), . . . , τ ′′(tagK)} be the respective tagged tasks.
The order relation τ′ � τ′′ is defined as follows:

τ′ � τ′′ =⇒

∃ 0 ≤ i ≤ K

{
vol(τ ′(tagj)) = vol(τ ′′(tagj)) ∀j < i

vol(τ ′(tagi)) < vol(τ ′′(tagi))

Relationship � gives priority to concrete tasks that allocate less load on
scarce resources: if there are few execution engines with a certain tag, and

there is a large number of sub-tasks requiring allocation on that specific engine,

the relation order prefers alternative patterns with lower workload for those

engines.
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3.3 Deadlines and offsets assignment
Meeting timing constraints of a concrete task depends on the allocation of the

sub-tasks onto the different execution engines. As these sub-tasks communicate

through shared buffers, they are forced to respect the execution order dictated

by the precedence constraints imposed by the graph structure.

To reduce the complexity of dealing with precedence constraints directly,

we impose intermediate offsets and deadlines on each sub-task. In this way,

precedence constraints are respected automatically if every sub-task is activated

after its offset and it completes no later than its deadline.

Many authors have proposed techniques to assign intermediate deadlines

and offsets to task graphs. Here we use techniques similar to those proposed

in [13] and [19].

Most of the deadline assignment techniques are based on the computation of

the execution time of the critical path. A path Px = {v1, v2, · · · , vl} is a sequence
of sub-tasks of task τ such that:

∀vl, vl+1 ∈ Px,∃e(vl, vl+1) ∈ E.

Let P denote the set of all possible paths of task τ . The critical path Pcrit(τ) ∈
P is defined as the path with the largest cumulative execution time of the
sub-tasks.

We define the slack Sl(P,D) along path P as:

Sl(P,D) = D−
∑
v∈P

C(v)

The assignment algorithm starts by assigning an intermediate relative dead-

line to every sub-task along a path by distributing the path’s slack as follows:

D(v) = C(v) + calculate_share(v, P )

The calculate_share function computes the slack for sub-task v along the
path. This slack can be shared according to two alternative heuristics:

• Fair distribution: assigns slack as the ratio of the original slack by the
number of sub-tasks along the path:

calculate_share(v, P ) =
Sl(P,D)

|P |
(2)

• Proportional distribution: assigns slack according to the contribution of
the sub-task execution time in the path:

calculate_share(v, P ) =
C(v)

C(P )
· Sl(P,D) (3)

Once the relative deadlines of the sub-tasks along the critical path have been

assigned, we can select the next path in order of decreasing cumulative execu-

tion time, and assign the deadlines to the remaining sub-task by appropriately
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subtracting the already assigned deadlines. The complete procedure has been

described in [19], and due to space constraints we do not report it here.

Let O(v) be the offset of a subtask with respect of the arrival time of the
task’s instance. The sum of the offset and of the intermediate relative deadline

of a subtask is called local deadline O(v) + D(v), and it is the deadline relative to
the arrival of the task’s instance.

The offset of a subtask is set equal to 0 if the subtask has no predecessors;

otherwise, it can be computed recursively as the maximum between the local

deadlines of the predecessor sub-tasks.

v8v1 v2
CPU

iGPU

dGPU

v6

v7
v7 Local deadline

v7 relative deadline

O(v6)

Absolute deadline

Activation time

task relative deadline

Figure 3: Example of offset and local deadline

Figure 3 illustrates the relationship between the activation times, the inter-

mediate offsets, relative deadlines and local deadlines of the sub-tasks of the

concrete task of Figure 1b. We assume that v1, v2, v8 have been allocated on the
same CPU whereas v6 and v7 each on a different engine. The activation time is
the absolute time of the arrival of the sub-task instance. The activation time of a

source sub-task corresponds to the activation time of the task graph. The offset

is the interval between the activation of the task graph and the activation of the

sub-task. The local deadline is the interval between the task graph activation

and the sub-task absolute deadline.

Definition 4. Sub-task v ∈ Vτ is feasible if for each task instance arrived at aj ,
sub-task v executes within the interval bounded by its arrival time a(v) = aj + O(v)
and its absolute deadline a(v) + D(v).
Lemma 1. A concrete task (resp. tagged task) is feasible if all its sub-tasks are
feasible.
Proof. By the definition, the local deadline of the sink sub-tasks is equal to the
deadline of the task D. Moreover, the offset of a sub-task is never before the
local deadline of a preceding sub-task. Therefore 1) the precedence constraints

are respected and 2) if sink sub-tasks are feasible then the concrete task (tagged

task, respectively) is feasible.

3.4 Single engine analysis
In this section, we assume that sub-tasks have been already been assigned off-

sets and deadlines, and they have been allocated on the platform’s engines, and
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we present the schedulability analysis to test if all tasks respect their deadlines

when scheduled by the Earliest Deadline First (EDF) algorithm.

Theorem 1. Let T a set of task graphs allocated onto a single-core engine. Task set
T is schedulable by EDF if and only if:∑

τ∈T

dbf(τ, t) ≤ t,∀t ≤ t∗ (4)

The dbf is the demand bound function [4] for a task graph τ in interval t. The
demand bound function is computed as the worst-case cumulative execution

time of all jobs (instances of sub-tasks) having their arrival time and deadline

within any interval of time of length t. For a task graph, the dbf can be computed
as follows:

dbf(τ, t) = max
v∈τ

∑
v′∈τ

⌊
t− Õ(v′)− D(v′) + T(τ)

T(τ)

⌋
C(v′) (5)

where
2
:

Õ(v′) = (O(v′)− O(v)) mod T(τ)

In our model, a task graph may contain conditional nodes, which model alter-
native paths that are selected non-deterministically at run-time. To compute the

dbf for a tagged task that contains conditional nodes, we must first enumerate

all possible conditional graphs by using the same procedure as the one used for

generating concrete tasks from specification tasks. Hence, the dbf of a tagged

task in interval t can be computed as the largest dbf among all the possible
conditional graphs.

3.5 Anticipating the activation of sub-tasks
Given an instance of sub-task v with arrival at a(v) and local deadline at D(v),
at run-time it may happen that all instances of the preceding sub-tasks have

already completed their execution before a(v). In this case, we activate the
sub-task as soon as the preceding sub-tasks have finished with the same local
deadline D(v).

Lemma 2. Consider a feasible set of sub-tasks allocated on a set of engines and
scheduled by EDF. If a sub-task is activated as soon as all predecessor sub-tasks have
finished, with the same local deadline, the set remains schedulable.
Proof. Descends directly from the sustainability property of EDF [5]. In fact, by
anticipating the activation of the sub-task without modifying its local deadline,

the sub-task will be scheduled with a longer relative deadline, and the demand

bound function will not increase.

From an implementation point of view, this technique avoids the need to

set-up activation timers for intermediate tasks; moreover, it allows us to reduce

the pessimism of the analysis in the presence of high preemption costs, as we

will see in the next section.

2
We remind that the remainder of a/b is by definition a positive number r such that a = kb+r.
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3.6 Preemption-aware analysis
In recent GPUs, preempting an executing task can be a costly operation (see Sec-

tion 6.3). In particular, the cost of preemption may significantly vary depending

on the preempted task and the engine. For example, preempting a graphical

kernel induces a larger cost compared to preempting a computing CUDA kernel.

Therefore, we need to account for the cost of preemption in the analysis.

We start by observing that, in the case of EDF scheduling, a job of a sub-task

vi can preempt a job of sub-task vj at most once, and only if its relative deadline
is shorter: D(vi) < D(vj).
A simple (although pessimistic) approach is to always consider the worst-case

preemption cost as part of the worst-case computation time of the preempting

task. Let pc(vj) denote the cost of preempting sub-task vj .

Lemma 3. Let V = {v1, v2, · · · , vK} be a set of sub-tasks to be scheduled by EDF on
a single engine.
Consider Vpc = {v′1, v′2, · · · , v′K}, where v′i has the same parameters as vi, except

for the wcet that is computed as C(v′i) = C(vi) + pci and pci = max{pc(v)|v ∈
V ∧D(v) > D(vi)}.

If Vpc is schedulable by EDF when considering a null preemption cost, then V is
schedulable when considering the cost of preemption.
Proof. The Lemma directly follows from the simple observation that the cost of
preemption can never exceed pci for sub-task vi.

Lemma 3 is safe but pessimistic. We can further improve the analysis by

observing that a sub-task cannot preempt another sub-task belonging to the

same task graph (we remind the reader that we assume constrained deadline

tasks). Furthermore, it may be impossible for two consecutive sub-task of a task

graph to both preempt the same sub-task as demonstrated by Theorem 2.

Definition 5 (Maximal sequential subset). Amaximal sequential subset VM of
task τ is a maximal subset of Vτ such that:
1. it is weakly-connected;
2. ∀v ∈ VM , v′ ∈ pred(v) is either null and does not belong to VM , or non null
and belongs to VM .

We denote by cand(VM ) the set of all sub-tasks in VM that are either sources, or have
a null predecessor. Further, we denote by vM the sub-task with the shortest local
deadline in cand(VM)

We observe that, since all the sub-tasks in VM are allocated on the same
engine and since they do not have any predecessor sub-task allocated on a

different engine (no empty predecessor), they can be activated as soon as the

predecessor sub-tasks have finished.

Now, suppose v1, v2 ∈ VM and that v1 is an immediate predecessor of v2. If v1
preempts a sub-task vj , and D(v2) ≤ D(vj), then vj can be executed only after
v2 has finished. This means that the cost of preempting vj can be accounted
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to only v1. We assign this preemption cost to the sub-task v
M
with the shorter

local deadline among all sub-tasks not having a predecessor in VM , whereas
the others do not pay any preemption cost. The preemption cost of any other

sub-task in V ′ is set equal to 0. For all sub-tasks that have a null predecessor, we
compute a preemption cost as in Lemma 3.

Theorem 2 (Limited preemption cost). Let V = {v1, v2, · · · , vK} be a set of sub-
tasks scheduled by to EDF on a single processor. Consider Vpc = {v′1, v′2, · · · , v′K}
where v′i has the same parameters as vi, except for the wcet that is computed as
C(v′i) = C(vi) + pci, and pci is computed as in Equation (6) or (7).
• If vi = vM , then

pci = max{pc(v)|v ∈ V \ Vτ ∧D(v) > D(vi)}; (6)

where Vτ is the set of sub-tasks of task τ where vi belongs.
• otherwise,

pci = 0 (7)

If Vpc is schedulable by EDF when considering a null preemption cost, then V is
schedulable when considering the cost of preemption.
Proof. We report here a proof sketch.
Consider any sub-task vi ∈ VM not belonging to cand(VM): it is activated as

soon as the preceding sub-tasks have finished executing their corresponding

instances. Then, if one of the preceding task of vi preempted a sub-task vj , the
preemption cost has already been accounted in the worst-case execution time

of the preceding task; as discussed above vj can only resume execution after vi
has completed. Thus, no further preemption cost need to be accounted.

If instead none of the preceding sub-task of vi has preempted vj , then vj
cannot start executing before vi completes because its deadline is not smaller
than D(vi), hence no preemption will occur.

In any case, no cost of preemption needs to be accounted for to vi.
Similarly, sub-tasks belonging to cand(VM) and different than vM are not

subject to preemptions.

4 Allocation
4.1 Allocation of task specifications
The goal of our methodology is to allocate a set of task specifications into a set

of engines, by selecting alternative implementations, so that all tasks complete

before their deadlines. From a operational point of view, is is equivalent to

finding a feasible solution to a complex Integer Linear Programming problem.

In facts, given the large number of combinations (due to alternative nodes,

condition-control nodes, and allocation decisions), an ILP formulation of this

14



D3.4 First release of the real-time analysis methods and tools on the edge

Version 1.0

problem fails to produce feasible solutions in an acceptable short time. There-

fore, in this section we propose a set of greedy heuristics to quickly explore the

space of solutions.

Algorithm 1 describes the basic methodology of our approach. The algorithm

can be customised with four parameters: oder is the sorting order of the concrete
task sets (see Sections 3.1 and 3.2); parameter slack concerns the way the slack is
distributed when assigning intermediate deadlines and offsets (see Section 3.3);

parameter alloc can be best-fit (BF) or worst-fit (WF); parameter omit concerns
the strategy to eliminate sub-tasks when possible (see Section 4.3).

At each step, the algorithm tries to allocate one single task specification

(for loop at line 3). For each task, it first generates all concrete tasks (line 4),

and sorts them according to one relationship order (� or�). Then, for each
concrete task, if first assigns the intermediate deadlines and offsets according

to the methodology described in Section 3.3 (line 9), using one between the fair

or the proportional slack distributions. Then, it separates the concrete tasks into

tagged tasks according to the corresponding tags (line 10).

Then, the algorithm tries to allocate every tagged task onto single engines

having the corresponding tag (line 14) (this procedure is described below in

Algorithm 2). If a feasible allocation is found, the allocation is generated, and

the algorithm goes to the next specification task (lines 15-16). If no feasible

sequential allocation can be found, the next concrete task is tested.

The algorithm gives priority to single-engine allocations because they reduce

preemption cost, as discussed in Section 3.6. In particular, by allocating an entire

tagged task onto a single engine, we reduce the number of null sub-task to

the minum necessary, and so we can assign the cost of preemption to fewer

sub-tasks.

If none of the concrete tasks of a specification task can be allocated (line

17), this means that one of the tagged tasks could not be allocated on a single

engine. Therefore, the algorithms tries to break some of the tagged tasks of

a concrete task into parallel tasks to be executed on different engines of the

same type. This is performed by procedure parallelize, which will be described

in Section 4.3. In particular, one part of the concrete task will be allocated, while

the second part will be put back in the list of not-yet-allocated task graphs (line

24).

If also this process is unable to find a feasible concrete task, the analysis fails

(line 29).

4.2 Sequential allocation
Algorithm 2 tries to allocate a concrete task on a minimal number of engines.

It takes as input a set of tagged tasks. For each tagged task, it selects the

corresponding engines, and sorts them according to the alloc parameter, that is
in decreasing order of utilization in the case of Best-Fit, or in increasing order

of utilization in case of Worst-Fit. Then, it tests the feasibility of allocating the

tagged task on each engine in turn. If the allocation is successful, the next tagged

task is tested, otherwise the algorithm tries the next engine. If the tagged task
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cannot be allocated on any engine, the algorithm fails. If all tagged tasks have

been allocated, the corresponding allocation is returned.

4.3 Parallel allocation
When the sequential allocation fails for a given task specification, the algorithm

tries to allocate one or more of its tagged tasks onto multiple engines having

the same tag. Algorithm 3 takes as input a concrete task and two parameters,

alloc for BF or WF heuristics, and omit to select which sub-task to remove first.
For each tagged task of the concrete task (line 5), the algorithm selects the

list of engines corresponding to the selected tag, and sorts them according to

BF or WF (line 7). Then, it tries to test the feasibility of the tagged task on each

engine (line 9). If the test fails, it removes one sub-task from the tagged task and

adds it to list of non allocated sub-tasks τ ′′ (line 11). We propose two heuristics:

1. Random heuristic: it selects a random sub-task and adds it to the omitted
list.

2. Parallel heuristic: to be feasible, the critical path of each tagged task must
be feasible even on a unlimited number of engines. Thus, we are interested

in sub-tasks that do not belong to the critical path because they are the

ones causing the non-feasibility. Thus, they are omitted one by one until

finding a feasible schedule.

The feasibility test is repeated until a feasible subset of τ(tag) is found. The
omitted tasks are tried on the next engine with the same tag (line 16). At the

end of the procedure, two concrete tasks are produced, τ ′ is the feasible part
that will be allocated, while τ ′′ will be tried again in the following iteration of
Algorithm 1.

5 Related work
Many authors [11–17, 21, 22] have proposed real-time task models based on

DAGs. However, to the best of our knowledge, none of the existing models

supports alternative implementations of the same functionality on different

computing engines.

Authors of [13] studied the deadline assignment problem in distributed real-

time systems. They formalize the problem and identify the cases where deadline

assignment methods have a strong impact on system performances. They pro-

pose Fair Laxity Distribution (FLD) and Unfair Laxity Distribution (ULD) and study

their impact on the schedulability. In [12], authors analyze the schedulability

of a set of DAGs using global EDF, global rate-monotonic (RM), and federated

scheduling. In [20], the authors present a general framework of partitioning

real-time tasks onto multiple cores using resource reservations. They propose

techniques to set activation time and deadlines of each task, and they an use

ILP formulation to solve the allocation and assignment problems. However,
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when applying such approaches on large applications consisting of hundred of

sub-tasks, the analysis can be highly time consuming.

DAG fixed-priority partitioned scheduling has been presented in [11]. The

authors propose methods to compute a response time with tight bounds. They

present partitioned DAGs as a set of self-suspending tasks, and proposed an

algorithm to traverse a DAG and characterize the worst-case scheduling scenario.

Unlike previous models, Melani et al [14] proposed to model conditional

branches in the code in a way similar to our conditional nodes, however their

model is not able to express off-line alternative patterns. They proposed differ-

ent methods to compute an upper-bound on the response-time under global

scheduling algorithms. In [18], alternative on-line execution patterns can be ex-

pressed using digraphs. However, the digraph model cannot express parallelism
and only supports sequential tasks.

In this work we assume preemptive EDF scheduling. Typically, preemption

on classical CPUs can be assumed to be a negligible percentage of the task exe-

cution. However, this is not always the case with GPUs processors. Depending

on the computing architecture and on the nature of the workload, GPU tasks

present different degrees of preemption granularity and related preemption

costs. Initial work on preemptive scheduling on GPUs assumed preemption

was viable at the kernel granularity [23]. A finer granularity for computing work-
loads is represented by CTA (Cooperative Thread Array) level preemption, hence,

preemption occurs at the boundaries of group of parallel threads that execute

within the same GPU computing cluster [2,8]. In such a scenario, the cost of pre-

empting an executing context on a GPU might present significant differences as

it will involve saving and restoring contexts of variable size and/or reaching the

next viable preemption point. Overhead measurements operated in the cited

contributions calls for modeling each GPU sub-task with a specific non-negligible

preemption cost that can be in the same order of magnitude of the execution

time of the sub-task.

6 Results and discussions
In this section, we evaluate the performance of our scheduling analysis and

allocation strategies. We compare against themodel cp-DAG proposed by Melani

et al. [14]. Please notice that in [14] the authors proposed an analysis for cp-

DAGs in the context of global scheduling, whereas our analysis is based on

partitioned scheduling. Therefore, we extended the cp-DAG model to support

multiple engines by adding a randomly selected tag to each node of the graph.

Moreover we applied the same allocation heuristics of Section 4 and the same

scheduling analysis of Section 3 to HPC-DAGs and to cp-DAG.

In the following experiments, we considered the NVIDIA Jetson AGX Xavier
3
.

It features 8 CPU cores, and four different kinds of accelerators: one discrete

and one integrated GPU, one DLA and one PVA. Each accelerator is treated as

a single computing resource. In this way, we can exploit task level parallelism

3 https://elinux.org/Jetson_AGX_Xavier
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as opposed to allowing the parallel execution of more than one sub-task to

partitions of the accelerators (e.g: at a given time instant, only one sub-task is

allowed to execute in all the computing clusters of a GPU).

6.1 Task Generation
We apply our heuristics on a large number of randomly generated synthetic task

sets.

The task set generation process takes as input an engine/tag utilization for

each tag on the platform. First, we start by generating the utilization of the n
tasks by using the UUniFast-Discard [10] algorithm for each input utilization.

Graph sub-tasks can be executed in parallel, thus task utilization can be greater

than 1. The sum of every per-tag utilization is a fixed number upper bounded by

the number of engines per tag.

The number of nodes of every task is chosen randomly between 10 and 30.

We define a probability p that expresses the chance to have an edge between
two nodes, and we generate the edges according to this probability. We ensure

that the graph depth is bounded by an integer d proportional to the number
of sub-tasks in the task. We also ensure that the graph is weakly connected (i.e.
the corresponding undirected graph is connected); if necessary, we add edges

between non-connected portions of the graph. Given a sub-task node, one of its

successors is an alternative node or a conditional node with probability of 0.7.
To avoid untractable hyper-periods, the period of every task is generated

randomly according from the list, where the minimum is 120 and the maximum
is 120, 000. For every sub-task, we randomly select a tag. Further, for each tag,
we use algorithm UUNIFAST discard again to generate single sub-task utilization.

Thus, the sub-task utilization can never exceed 1. Further, we inflate the utiliza-

tion of each sub-task by the task period to generate the worst case execution

time of every vertex.

A cp-DAG is generated from a HPC-DAG by selecting one of the possible

concrete tasks at random.

6.2 Simulation results and discussions
We varied the baseline utilization from 0 to the number of engines per engine
tag in 16 steps. Therefore, the step size vary from one engine tag to the other:
the step size is 0.5 for CPUs, and 0.0625 for the others. For each utilization, we
generated a random number of tasks between 20 and 25.

The results are presented as follows. Each algorithm is described using 3
letters: (i) the first letter is either B for best fit or W for worst first allocation

techniques; (ii) the second is either O for the � order relation, or R for the
� order relation; (iii) the third character describes the deadline assignment
heuristic, F for fair and P for proportional. The algorithm namemay also contain
either option P for the parallel allocation heuristic that eliminates parallel nodes
first, or R the random heuristic which randomly selects the sub-task to remove.
For Figures 4, 5, 6, 7, we run 85 simulations per utilization step.
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Figure 4: Schedulability rate VS total utilization.

Figure 4 represents the schedulability rate of each combination of heuristics

cited above as a function of the total utilization. The fair deadline assignment

technique presents better schedulability rates compared to proportional dead-

line assignment. In general, BF heuristic combinations outperform WF heuristic:

this can be explained by observing that BF tries to pack the maximum number

of sub-tasks into the minimum number of engines, and this allows for more

flexibility to schedule heavy tasks on other engines.
In the figures, the cp-DAG model proposed in [14] is shown in yellow. Since

the cp-DAG has no alternative implementations, the algorithm has less flexibility

in allocating the sub-tasks, therefore by construction the results for HPC-DAG
dominate the corresponding results for cp-DAG. However, it is interesting to

measure the difference between the two models: for example in Figure 4 the

difference in the schedulability rate between the two models is between 10%

and 20% for utilization rates between 6 and 14.

When the system load is low, all combinations of heuristics allow having high

schedulability rates. BRF shows better results because it is aimed at relaxing the

utilization of scarce engines, thus avoiding the unfeasibility of certain task sets

due to a high load on a scarce engines (DLA and PVA/ GPUs). However, when

dealing with a highly loaded system, BOF presents better schedulability rates, as

it reduces the execution overheads on all engines.

Figure 5 reports the average number of active cores (CPUs) as a function

of the total utilization. WF-based heuristics always use the highest number of

CPU cores because our task generator outputs at least 15 CPU subtasks. Hence,
the number of tasks is larger than the available number of CPU cores (which

is 8, in our test platform). BF heuristics allows to pack the maximum number

of sub-tasks on the minimum number of engines, thus the utilization increases

quasi-linearly. This occurs until the maximum schedulability limit is reached (i.e.

number of cores). BRF heuristic uses more CPU cores because it preserves the
scarce resources, thus it uses more CPU engines. As BOF privileges reducing the

overall load, it reduces the load on the CPUs compared to BRF.
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Figure 6: Active CPU utilization VS total utilization

Figure 6 shows the average active utilization for CPUs. Average utilization of

BF-based heuristics is higher compared to WF. In fact, the latter distributes the

work on different engines thus the per-core utilization is low in contrast to BF.

Again, BRF has higher utilization than BOF because it schedules more workload

on CPU cores than the other heuristics. As the workload is equally distributed

on different CPUs, the WF heuristics may be used to reduce the CPUs operating

frequency to save dynamic energy. Regarding BF heuristics, we see that BRF is

not on the top of the average load because it uses more cores than the others.

Figure 7 shows the average utilization of the scarce resources. As you may

notice, order relation� based heuristics allows to reduce the load on the scarce
resources compared to �. In fact, the higher is the load, the less loaded are the
scarce resources.
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6.3 Preemption cost simulation
In all previous experiments, we applied the analysis described in Section 3.6

to account for preemption costs. In particular, we applied the technique of

Theorem 2, by assuming that the cost of preempting a sub-task is 30% of the

sub-task execution time on a GPU, 10% on DLA and PVA, and 0.02% on the CPUs.

DLA and PVA are non-preemptable engines, however longer jobs might be split

into smaller chunks and this translates in a splitting overhead as we submit

many kernel calls as opposed of a single batch of commands.
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Figure 8: Preemption cost Theorem vs max

To highlight the importance of a proper analysis of the cost of preemption, in

Figure 8 we report the schedulability rates obtained by BRF-P in two different

cases: when considering the analysis of Lemma 3 (where the maximum pre-

emption cost is charged to all preempting sub-tasks) and that of Theorem 2,
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where the cost is only charged to one of the sub-tasks in the maximal sequential

subset.

With the increase of of utilization, schedulability drastically falls for the first

method, while the improved analysis of Theorem 2 keeps high schedulability

rates.

7 Conclusions and future work
In this deliverable, we presented the HPC-DAG real-time taskmodel, which allows

to specify both off-line and on-line alternatives, to fully exploit the heterogeneity

of complex embedded platforms. We also presented a scheduling analysis

and a set of heuristics to allocate HPC-DAGs on heterogeneous computing

platforms. The analysis takes into account the cost of preemption that may be

non-negligible in certain specialized engines.

Results of our extensive synthetic simulations show that a significant reduc-

tion in pessimism occurs with our proposed approach. This lead to an increase

in resource utilization compared to similar approaches in the literature. As

for future work, we are considering extending our framework to account for

memory interference between the different compute engines, as it is known to

cause significant variations in execution times [1, 9] and also to include other

scheduling policies.
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Algorithm 1 Allocation algorithm
1: input : T : set of task specifications
2: parameters : order (� or�), slack (fair or proportional),
3: alloc (BF or WF), omit (parallel or random)
4: output : SUCCESS or FAIL
5: for τ ∈ T do
6: Ω = generate_concrete_task(τ)
7: sort(Ω, order)
8: for (τ ∈ Ω) do
9: assign_deadlines_offsets(τ, slack)
10: S(τ) = filter_tagged_task(τ)
11: end for
12: allocated = false
13: for (τ ∈ Ω) do
14: if (feasible_sequential(S(τ), alloc)) then
15: allocated = true; assign sub-tasks to engines
16: break;
17: end if
18: end for
19: if (not allocated) then
20: for (τ ∈ Ω) do
21: (τ′, τ′′) = parallelize(τ, alloc, omit)
22: if (τ′ 6= ∅) then
23: allocate τ′ to selected engines
24: add back τ′′ to T
25: allocated = true
26: break
27: end if
28: end for
29: if (not allocated) then return FAIL
30: end if
31: end for
32: return SUCCESS
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Algorithm 2 feasible_sequential
1: input: S(τ): set of tagged tasks, alloc
2: output: feasibility: SUCCESS or FAIL
3: for (τ(tag) ∈ S(τ)) do
4: engine_list=select_engine(tag)
5: sort_engines(engine_list, alloc)
6: f = false
7: nfeas = 0

8: for (e ∈ engine_list) do
9: f = dbf_test(τ ∪ Te)
10: if (f ) then
11: save_allocation(τ, e)
12: nfeas ++

13: break
14: end if
15: end for
16: if (not f ) then return FAIL;
17: end for
18: if (nfeas = |S(τ)|) then
19: return SUCCESS, saved_allocations
20: end if
Algorithm 3 parallelize
1: input: τ: concrete task, alloc (BF or WF),
2: omit (parallel or random)
3: output: concrete tasks (τ ′, τ ′′)
4: τ ′ = ∅, τ ′′ = ∅
5: for (τ(tag) ∈ S(τ)) do
6: engine_list=select_engines(tag)

7: sort(engine_list, alloc)
8: for (e ∈ engine_list) do
9: f=dbf_test(τ(tag) ∪ Te)
10: while (not f ) do
11: τ ′′ = τ ′′∪ remove(τ(tag), omit)
12: f=dbf_test(τ(tag) ∪ TE)
13: end while
14: if (τ(tag) 6= ∅ ) then
15: τ ′ = τ ′∪ save_allocation(τ(tag), e)
16: τ(tag) = τ ′′, τ ′′ = ∅
17: allocated = true
18: break
19: end if
20: end for
21: if (not allocated) return ∅, τ
22: end for
23: return τ ′, τ ′′
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