

FOR BIG DATA ANALYTICS COORDINATING EDGE AND CLOUD

Project Overview

WETICE 2019 – EU Project Space

Roberto Cavicchioli

UNIMORE

Motivation

Cloud computing

- Data storage
- High computation capabilities

Edge computing

- Data collection and transfer
- Limited computation capabilities

Data Analytics

- There is a need to devise new data analytics architectures due to
 - The pressure of a constant increment of volume, variety and velocity of data-sets on the compute continuum
 - The newest smart systems with distributed data sources, and data analytics and real-time requirements, e.g., smart cities
 - 3. New **highly parallel embedded** processor architectures increase computation capabilities of the edge

Our Vision

The challenges of the newest smart systems can be addressed by devising a fully distributed (fog-like) architecture in which edge and cloud computing resources are coordinated, enabling a combined data-in-motion and data-atrest analytics

Combined data-in-motion data-at-rest analytics

Data sources

Main Contribution

- Develop a novel software architecture for distributed fog-like computing architecture capable of
 - Coordinate edge and cloud computing resources
 - 2. Distribute and coordinate big-data workloads with real-time requirements along the compute continuum
 - Combine data-in-motion and data-at-rest analytics
 - Increase productivity in terms of programmability, portability/scalability and (guaranteed) performance

Combined data-in-motion data-at-rest analytics

Software Architecture

- Integrate technologies from different computing domains into a single development framework
 - 1. Use the most advance data analytics solutions
 - Apply high-performance techniques to distribute computation across edge and cloud resources
 - 3. Apply of **timing analysis techniques** from real-time embedded domain
 - Use the most advanced parallel heterogeneous embedded platforms

Project Objectives

- 1. Facilitate the development and execution of *combined data-in-motion data-at-rest analytics* based on distributed computing
- 2. Integrate state-of-the-art big data analytic methods to take full advantage of distributed computing
- 3. Provide *real-time guarantees* on the amount of data streams that the system is capable to process to ensure the right quality of service
- 4. Efficiently distribute workloads along the continuum reducing latency and increasing throughput compared to cloud solutions at a lower cost
- Test the envisioned software architecture on a real-world use-case from the smart city domain
- 6. To investigate the *impact of initiatives and standards* on the CLASS use-case

Smart City Use-case

- Test and highlight the benefits of the CLASS SA
- Deployed on the Automotive Smart Area in the city of Modena (Italy)
 - 1 Km² urban area with connectivity that enables IoT devices (e.g., smart cameras, traffic scanner) to exchange information
- Three highly-connected cars equipped with
 - Vehicle-to-infrastructure (V2I), vehicle-to-cloud (V2C), vehicle-to-vehicle (V2V)
 - Cameras @4K, long-range and middle range radars and ultrasound sensors

Automotive Smart Area

V2V, V2I, V2C connectivity

Smart City Use-case

- Data analytics and real-time requirements
- 11.4 GB/s of heterogeneous data-sets considering 3 cars and a 1 km² sensing area

- Intelligent traffic management, acting on traffic lights and smart road signals
 - "Green routes" for emergency vehicles
 - Traffic enhancement based on intelligent cross road management
- 2. Advanced driving assistance systems
 - Intelligent cross road management based on obstacle detection
 - Automated valet parking systems

Industrial Advisory Board

- 1. Monitor and provide recommendations (considering their specific requirements) on the research conducted in CLASS
- Excellent dissemination and (potential) exploitation channel
- 3. Measure the interest of industries about the CLASS project

Conclusions

- CLASS aims to increase productivity on the implementation of big data systems by developing a novel SA for distributing and coordinating big-data workloads along the compute continuum while providing real-time guarantees
- CLASS aims to increase data analytics capabilities by efficiently combine data-in-motion and dataat-rest analytics
- 3. CLASS aims to apply the SA to develop a distributed sensing/computing infrastructure within the Modena Automotive Smart Area for advanced urban mobility applications with data analytics and real-time requirements

Data Analytics and
Computation Distribution

Cloud Software
Components

Edge Software
Components

Low Level Resource Managers

Thanks for your attention.

Stay tuned!

www.class-project.eu

Twitter: @EU_CLASS

LinkedIn: http://bit.ly/CLASS-project