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Executive Summary 
This deliverable presents the final release of the CLASS software architecture, 
elaborated during the last phase of the project “Validation”. The deliverable is 
organized in three main parts.  

First, an overview of the CLASS software architecture is given, briefly describing all the 
software components and focusing on any updates with respect to the second release 
of the architecture, reported in D2.6 [1]. The final release of the CLASS software 
architecture has been used for the evaluation and validation of the CLASS use cases, 
as reported in D1.6 [2], as well as the other evaluation-related deliverables of WP2-
WP5.  

Second, a description of the analytics workflow for the execution of the two CLASS use 
cases, namely collision detection and air pollution estimation, is given, as well as an 
example of the workflow execution and the expected outputs. This example 
showcases the capabilities of the software architecture to facilitate the development 
and distribution of the workflow across the compute continuum.  

Finally, a detailed guide for the deployment of the full stack of the CLASS software 
architecture is given, along with links to the repositories where the relevant open-
source code can be located.  

Overall, this deliverable marks the successful completion of Task 2.3 and the 
achievement of all objectives defined for milestone MS4 of the project.  
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1 Introduction 
This deliverable presents the final release of the CLASS software architecture, 
elaborated during the last phase of the project (“Validation”). The deliverable is 
organized in three main parts.  

First, Section 2 provides the overall picture of the final release of the CLASS Software 
Architecture. The proposed architecture is composed of four main components, which 
are reported and evaluated in isolation in dedicated deliverables of the corresponding 
Work Packages (WPs): the data analytics platform (reported in D5.5 [3]) the cloud 
analytics platform (D4.6 [4]), the edge analytics platform (D3.6 [5]) and the 
computation distribution layer (in D2.8 [6]). Furthermore, the CLASS software 
architecture has been deployed in the Modena Automotive Smart Area (MASA) and 
employed for the final validation of the project use cases, as reported in D1.6 [2]. 

In continuation, Section 3 provides an overview of the data analytics methods 
developed within CLASS for the two project use cases, namely collision detection and 
air pollution estimation, and how they are executed over the CLASS Software 
Architecture (SA). Both the COMPSs task-based methods executed at the edge, as well 
as the analytics running in the cloud as Lithops serverless functions are briefly 
described. Two examples are given for the execution of the end-to-end workflow. In 
the first one, a recorded video from a staged collision using the CLASS vehicles has 
been used as an input. However, as this video cannot be made public due to 
privacy/GDPR issues, a second reproducible example has been provided, using a 
publicly available video of a collision.  

Section 4 provides a detailed guide of the steps for the deployment of the CLASS SA. 
This section is organized in four parts. The first two subsections refer to the 
deployment for the execution of the two CLASS applications using the offline video. 
The other two subsections refer to the deployment of two additional features of the 
CLASS SA, namely, i) the Rotterdam service, which can be used jointly with COMPSs to 
scale the deployment of containerized COMPSs workers at the cloud, ii) the EXPRESS 
prototype, which has been delivered as a stand-alone feature in D5.4 [7]. Whenever 
possible, links to the corresponding deliverables are given, to avoid duplication of the 
information.  
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2 The final release of the CLASS Software 
Architecture 

This section will provide a brief overview of the CLASS SA. The first outline of the CLASS 
SA has been presented in D2.1 [8], and has been refined as each project milestone has 
been reached, as reported in D2.4 [9] for milestone MS2 and D2.6 [1] for milestone 
MS3.  
 

 
Figure 1. The final release of the CLASS Software Architecture Ecosystem 

Figure 1 depicts the components and interfaces that form the final release of the 
CLASS software development ecosystem, which has been evolving throughout the 
lifetime of the project. Solid lines represent the interconnections of all the software 
components, whereas dashed lines represent other possible interactions between 
software components, not including all the envisioned CLASS functionalities. Each 
component is also marked with the number of the corresponding Work Package (WP). 

The CLASS ecosystem consists of a data analytics platform/layer (WP5) upon which 
the data analytics methods are executed (WP1). The algorithms can be implemented 
and parallelized with the big-data analytics programming models provided by the data 
analytics layer. This layer also exposes the interface of OpenWhisk (WP3) and COMPSs 
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(WP2), responsible of efficiently distributing the computation across the compute 
continuum by coordinating and exploiting edge and cloud performance capabilities. 
These two runtime systems (OpenWhisk and COMPSs) further exploit the parallel 
programming models available in the edge (WP3), and the containerized tasks for 
cloud execution by means of the Rotterdam Container as a Service (CaaS) Application 
Programming Interface (API) (WP4). 
The components of the CLASS software architecture are also summarized in Table 1, 
where the name of the components, their owner and license and the most relevant 
deliverables with their development are listed.  
 

Table 1. CLASS Software Components 

Software Component Owner License Deliverable 

Data Analytics 
Platform 

Openwhisk / 
EXPRESS 

IBM open-source D5.3, D5.4, D5.5 

Data analytics 
back-ends 

Lithops IBM open-source 
 D5.3, D5.4, 

D5.5 
COMPSs 

programming 
model 

BSC open-source  D2.4 

DNN/tkDNN UNIMORE open-source D1.4, D3.3, D5.3 
Computation 
Distribution 

COMPSs BSC open-source D2.4, D2.6 
dataClay BSC open-source D2.4, D2.6 

Cloud 
components 

Rotterdam ATOS open-source 
D4.1, D4.2, 

D4.4, D4.7, D4.6 

SLALite ATOS open-source 
D4.1, D4.2, 

D4.4, D4.7, D4.6 
SLA Predictor ATOS open-source D4.6 

Kubernetes  Canonical   open-source 
D4.1, D4.2, 

D4.4, D4.7, D4.6 
Kubeless Bitnami open-source D4.7 

Openshift Red Hat open-source 
D4.1, D4.2, 

D4.4, D4.7, D4.6 

Docker Docker Inc. open-source 
D4.1, D4.2, 

D4.4, D4.7, D4.6 

Edge 
components 

CUDA NVIDIA proprietary D3.1, D3.3, D3.6 
cuDNN NVIDIA proprietary D3.1, D3.3, D3.6 

Micro K8s Canonical open-source D4.7 
Real-time 
Scheduler 

UNIMORE open-source D3.4, D3.5 
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In continuation, a brief detail of the key components and their role in CLASS is given. 

2.1 Data analytics platform 
The CLASS data analytics platform provides the necessary interfaces for the 
application programmers to develop complex big-data analytics workflows, for real-
time execution across the compute continuum. The platform allows multiple types of 
big-data analytics back-ends, such as map/reduce, task-based, or Deep Neural 
Network (DNN), to integrate in a uniform mesh where workloads and components can 
interact or be invoked via REST, Command Line Interface (CLI) or in response to events. 
The key to this novel approach is the use of a serverless platform based on Apache 
OpenWhisk [10]. 

OpenWhisk is a serverless, open source cloud platform (originally from IBM) that 
executes functions (called actions) in response to events at any scale. Both actions and 
events are high-level abstractions that can be implemented in various ways. Actions 
can be written in virtually any programming language and using many platforms and 
Software Development Kits (SDKs). Similarly, events can be implemented by any 
concrete event or signal, such as message arrival, command invocation, device signals, 
etc. Once defined, events can be bound to actions using rules, to create event-driven 
applications. Such applications are cloud-native, in the sense that events can arrive 
and be processed by actions anywhere in the cloud, and actions are elastically auto-
scaled to match the event load, thus relieving the developers from these concerns. 
The Owperf tool has been used for the performance evaluation of the analytics 
workflows of the OpenWhisk-based deployment. 

The data analytics platform can be adapted to support multiple analytics back-ends. 
Support for the following data analytics back-ends has been provided in CLASS: 

- The Lithops framework (formerly known as PyWren). Lithops is an open-
source lightweight implementation of Map/Reduce programming model over 
the Apache Openwhisk serverless platform, aiming to massively scale Python 
applications and fully support concurrent execution. In CLASS, Lithops has 
been used to accelerate the computation of the trajectory prediction and 
collision detection analytics methods (for more details, see D5.4 [7] and D5.5 
[3]).  

- The COMP Superscalar (COMPSs) programming model. The COMPSs task-
based programming model enables programmers to develop distributed 
applications following the sequential programming paradigm and using 
standard languages (e.g., Python, Java, C/C++), while abstracting applications 
from the underlying infrastructure. In CLASS, the COMPSs programming model 
has been employed to enable the distribution and concurrent execution of the 
data analytics workflow for the object detection and air pollution use cases 
(see Section 3 for more details). 

- A Deep Neural Network (DNN) - a suited and personalized version of YOLOv3, 
using the tkDNN library that exploits the capabilities of NVIDIA boards to 
obtain the best inference performance (for more details see D1.4 [11]).  
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Another contribution of CLASS has been the delivery of an EXtended PREdictability 
ServerlesS (EXPRESS) prototype as part of the data analytics platform (for more details, 
see D5.4 [7] and D5.5 [3]). In CLASS, EXPRESS has been completely redesigned as a 
portable solution for predictable execution of serverless functions on top of an existing 
serverless platform (i.e., OpenWhisk in CLASS). EXPRESS is capable of supporting 
several key predictable serverless function execution features, such as mitigation of 
initialization and finalization, custom scheduling with demand prediction and/or real-
time scheduling, dynamic pool scaling and even predictable state services (by properly 
extending its custom runners). Furthermore, EXPRESS is portable, in the sense that it 
can be implemented on top of any basic Function as a Service (FaaS) system and 
maintain a similar development experience for both EXPRESS functions and for regular 
functions. 

2.2 Computation distribution 
The deployment and execution of the complex data analytics workflows across the 
compute continuum are handled by COMPSs. In addition to the programming model, 
mentioned in the previous section, COMPSs provides a runtime system that exploits 
the inherent parallelism of applications at execution time. COMPSs handles the 
scheduling and distribution of the application tasks over the compute continuum, 
from edge to cloud, while honouring the required data dependencies and handling 
any required data transfers in a way transparent to the developer.  

dataClay is a distributed data store that enables applications to store and access 
objects in the same format they have in memory, and executes object methods within 
the data store. In addition, dataClay enables the execution of code next to the data. 
By moving computation close to the data, dataClay reduces the amount and size of 
data transfers between the application and the data store, thus improving 
performance of applications.  

The specific role of dataClay in the CLASS architecture is to: i) ensure the availability 
of data across the compute continuum, wherever and whenever required by the data 
analytics, and ii) to create and maintain and periodically clean the Data Knowledge 
Base (DKB), which contains historical data generated by the analytics. 

dataClay is natively integrated with the COMPSs framework, thus easing the 
development of applications that take advantage of data distribution and data locality. 
Furthermore, in the context of CLASS, a data manager layer (see D5.5 [3]) and some 
additional API calls have been implemented to integrate dataClay with Lithops-based 
serverless functions.  

2.3 Cloud analytics platform 
The cloud analytics platform provides the cloud data analytics service management 
and scalability features. At the cloud level, CLASS employs Rotterdam, a Container as 
a Service (CaaS) facade which facilitates the deployment and lifecycle management of 
containerized applications and cloud data analytics workloads on container 
orchestration platforms through API calls, abstracting all the cloud infrastructure 
details away from developers. It includes the SLALite application, a lightweight 
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implementation of a Service Level Agreement (SLA) system, responsible for enforcing 
QoS parameters, including real-time. It makes use of Prometheus monitoring to collect 
the metrics that are later on evaluated in terms of SLA requirements Furthermore, a 
new service called SLA Predictor has been added to the SLALite, enabling the system 
to take informed decision to anticipate situations that may lead to performance 
degradation and thus scaling resources accordingly.  

Rotterdam supports the deployment, management and monitoring of multiple 
containerized applications, serverless functions and workflows on multiple 
infrastructures simultaneously, allowing the final users to define QoS parameters and 
to select where to initially run their applications, from Cloud infrastructures to Edge 
devices and scaling or migrating the application if needed to fulfil the Quality of Service 
(QoS) requirements. Currently, the supported container orchestrators are Kubernetes, 
Openshift and Micro Kubernetes (MicroK8s). In addition, Rotterdam can also run 
serverless functions on Kubeless. 

The Rotterdam Caas API provides a set of REST calls for managing the lifecycle of sets 
of containers (enabling actions such as uploading, organizing, executing, stopping, 
etc.), while abstracting all the resource infrastructure details. The API has been 
employed for the integration of Rotterdam and COMPSs, enabling the automatic 
scaling of COMPSs workers at the cloud, so as to match specific performance 
requirements and secure real-time guarantees.  

2.4 Edge analytics platform 
The edge analytics platform provides the software tools to execute real-time data-
analytics methods in the edge.  

A real-time scheduler for the schedulability analysis of a defined taskset at the edge 
has been implemented (for more details see D3.5). Given a description of a data 
analytics workflow as a DAG (Direct Acyclic Graph), representing the set of tasks and 
their dependencies, the real-time scheduler will assign each task to the most suitable 
resource for maximizing both efficiency and schedulability. Different engines (CPU, 
GPU, FPGA) can be supported, whereas different scheduling algorithms (such as EDF, 
FIFO, preemptive or non-preemptive) can be applied at each engine.  

For the object detection and tracking applications, the CUDA model and cuDNN library 
are employed. The CUDA parallel programming model is a software layer that gives 
direct access to the GPU's virtual instruction set and parallel computational elements, 
for the development and execution of compute kernels. It has been created by NVIDIA 
and is designed to work with programming languages such as C/C++. CUDA has 
evolved into a highly-parallel multi-core system, which is very efficient at large data 
manipulation. Within CLASS, CUDA will be exploited to obtain the desired compute 
capability at the edge. The NVIDIA CUDA Deep Neural Network library (cuDNN) is a 
GPU-accelerated library of primitives for deep neural networks. 

On top of these components, CLASS employs the NVIDIA TensorRT platform that 
includes a deep learning inference optimizer and runtime that delivers low latency and 
high-throughput for deep learning inference applications. The cross-platform OpenCV 
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library supporting a CUDA-based GPU interface is also used for the implementation of 
the object detection analytics methods.  

3 Development and distribution of data 
analytics workflows over the CLASS SA 

This section will provide an example of the execution of the CLASS use case 
applications of collision detection and air pollution estimation over the CLASS SA. First, 
a brief overview of the data analytics methods will be given, followed by a description 
of how these tasks are developed employing the task-based COMPSs programming 
model for the workflow executed at the edge, as well as the Lithops map-reduce 
approach. In Section 3.3, the distribution of the analytics across the compute 
continuum is discussed. Finally, an example of the execution and expected outcome 
of the data analytics over the CLASS SA is given.  

3.1 Data analytics methods overview  
An overview of the data analytics methods employed for the two CLASS use cases, 
namely the collision detection and the air pollution estimation, are shown in Figure 2. 
These methods have been extensively described in D1.4 [11] and D1.6 [2], so only a 
brief summary will be given in this section.  

 
Figure 2. The complete picture of data analytics methods of the CLASS use cases 

executed over the CLASS infrastructure 

The collision detection application consists of a COMPSs application that connects to 
the “object detection” data analytics method and invokes the “object tracking”, which 
identifies and tracks objects. Similarly, the “sensor fusion” method detects and tracks 
the objects sensed by the smart cars. The detected objects from all sources go into the 
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“data deduplication” method, and the output is stored in dataClay (persisting the 
information at the fog level) and is federated to the cloud, stored in the Data 
Knowledge Base (DKB). At the cloud, the “trajectory prediction” is invoked, updating 
the model with the predicted trajectories of the detected objects. Then, the “collision 
detection” method identifies potential collisions and issues a warning when needed to 
the involved smart/connected cars. The trajectory prediction and collision detection 
invocation can be either time-based or event-based, depending on the desired 
behavior of the system.  

The air pollution estimation application is executed by periodically invoking the “air 
pollution computation” method, which obtains the aggregated vehicle-related data 
and calculates the emission levels of different pollutants, such as nitrogen oxides 
(NOx), carbon monoxide (CO), carbon dioxide (CO2) and particulate matter (PM). 

3.2 Analytics back-ends and computation distribution 

3.2.1 COMPSs-based analytics workflow at the edge  

Figure 3 shows the pseudo-code of the COMPSs-based Python application that  
implements the data analytics executed at the edge for the two CLASS use cases.  
The application iteratively executes the following functionalities encapsulated in 
COMPSs tasks: 
- get_detected_objects: it connects via UDP socket, to the edge device where 
the “object detection” data analytics method (tkDNN) is being executed, namely, the 
edge node where the input videos from smart cameras are processed. The list of 
detected objects is received.  
- tracker: it executes the “object tracking” data analytics method. It is implemented 
in C++, thus a Python binding has been implemented. Each data source (i.e., camera) 
is connected to a different tracker tasks, enabling the parallelization of the tracking 
process among multiple cameras.  
- deduplicator: it deduplicates the objects detected by multiple sources (e.g., 
different cameras with partial overlapping of the covered area), returning only one 
copy per object. 
- create_data_model: it executes a dataClay method to store newly detected 
objects or update existing objects with new events (i.e., detected positions and other 
relevant information), creating snapshots. Additionally, the task creates the input files 
with the vehicle-related information needed for the air pollution computation.   
- federate_info: it federates the snapshots created at the fog level to the 
dataClay backend at the cloud (updating the DKB).  
- air_pollution_computation: it periodically calls a containerized R 
application that is executed at the cloud and implements the PHEMLight1 model for 
the air pollution estimation. More details on the PHEMLight model can be found in 
D1.2 [12] and D1.6 [2]. 
It should be noted that the above workflow is mostly common for both CLASS use 
cases, since the air pollution use case is built upon the vehicle-related information 

                                                             
1 https://sumo.dlr.de/docs/Models/Emissions/PHEMlight.html  

https://sumo.dlr.de/docs/Models/Emissions/PHEMlight.html
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provided by the object detection and tracking analytics. The input flag 
“with_pollution” is passed at the time of execution to determine whether the air 
pollution computation will be executed or not.  

 
 

@task(returns=list) 
def get_detected_objects (camera_socket): 
    return tkDNN_detected_objects(camera_id) 
 
@task(object_list=IN, tracked_objects=IN, returns=list) 
def tracker(object_list, tracked_objects): 
    return track(object_list, tracked_objects) 
 
@task(object_list=COLLECTION_IN, returns=list) 
def deduplicator(tracked_objects): 
    return deduplicated_obj(tracked_objects) 
 
@task(deduplicated_objects=IN, dC_model = IN) 
def create_data_model(deduplicated_obj): 
    snapshot = dC_model.Create_snapshot(deduplicated_obj) 
    create_air_pollution_datafile(deduplicated_obj) 
    return snapshot 
 
@task(snapshot=IN, backend_to_federate=IN) 
def federate_info(snapshot, backend_to_federate): 
    snapshot.federate_to_backend(backend_to_federate) 
 
@task(self=INOUT) 
def air_pollution_computation(air_pollution) 
   return execute_PHEMLight() 
 
## Main function ## 
input: with_pollution 
while True: 
      for i, socket in camera_sockets 
            obj_list = get_detected_objects (socket) 
            tracked_obj[i] = tracker(obj_list, tracked_obj[i]) 
      deduplicated_obj = deduplicator(tracked_obj) 
      snapshot = create_data_model(deduplicated_obj) 
      federate_info(snapshot, external_backend_id) 
      if (with_pollution):  
            air_pollution = air_pollution_computation(air_pollution) 

Figure 3. The COMPSs workflow for the CLASS use cases  

 

Figure 4 shows the Direct Acyclic Graph (DAG) representation of the COMPSs tasks for 
two iterations of the workflow considering a single video source. In reality, the 
complexity of the DAG is much higher, since typically a higher number of iterations is 
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considered for each scheduling interval (resulting to a high number of generated 
tasks), and multiple video sources are employed. As a reference, Figure 5 shows the 
DAG corresponding to 1 second of processing for a single camera.  

 
Figure 4. COMPSs DAG for two iterations of the workflow for a single camera source 

 

 
Figure 5. COMPSs DAG for 1s of processing from a single video source 

The generated tasks of the DAG are then distributed and scheduled based on the 
implemented heuristics that aim to minimize the end to end execution time. More 
details on the scheduling policy can be found in D2.6 [1], whereas the achieved 
performance has been evaluated and presented in D2.8 [6].  

3.2.2 Data analytics at the cloud 

For the collision detection use case, two Lithops functions are periodically invoked in 
the cloud. First, the trajectory prediction function calculates the predicted trajectory 
of all tracked objects with a sufficient history of detected positions (which is a 
configurable parameter). The integration with the COMPSs workflow has been 
achieved by a Lithops wrapper function which: i) obtains all relevant dataClay objects 
with their events by calling a dataClay method, ii) divides them into chunks, and iii) 
triggers the Lithops actions for the concurrent estimation of predicted trajectories for 
each chunk of data based on a Python-implemented trajectory prediction method. The 
predicted trajectories are then appended to the corresponding objects in the DKB.  

When the collision detection function is invoked, another Lithops wrapper function 
gets all the relevant objects from the DKB through a dataClay API call and executes the 
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Python-implemented collision detection method. The detected collisions are then 
published on a messaging channel 2, where they can be received by the desired 
endpoint (which in the use case scenario is a client at the smart cars). More 
information can be found in D5.4 [7] and D5.5 [3]).  

The air pollution estimation is executed in a containerized R application 
(PHEMLight_advance.R3) that implements the PHEMLight model (for more details see 
1.2 [12] and 1.6 [2]). This application is periodically invoked by the COMPSs workflow 
at the fog, and is executed at the cloud, either as a standalone container, or via 
Rotterdam (if scaling of the application is required).  As an output, the air pollution 
use case generates a file with the estimated emissions at street level, aggregated per 
the area covered by each street camera. For the CLASS use case scenario, a 
visualization tool has been implemented to show the estimated pollution levels on a 
map of the MASA area.  

3.3 The compute continuum infrastructure 
Figure 6 shows a description of how the data analytics methods presented in the 
previous sections are executed on top of the CLASS software architecture, delivering 
the CLASS use case applications. Thanks to the capabilities of the CLASS SA, the 
application can be distributed across the edge and cloud infrastructure, with full 
coordination of resources, software components, and big-data analytics methods. 

 
Figure 6. Description of the execution of the collision detection and air pollution 
estimation applications over the CLASS software architecture 

The infrastructure employed for the CLASS use cases at the City of Modena has been 
fully described in D1.6 [2]. At the edge level, four fog nodes have been used (three 
connected to the video sources, and the fourth playing the role of aggregator, where 
the COMPSs master and the dataClay edge backend were deployed). At the cloud side, 
at least three separate environments have been set up, for hosting the DKB (dataClay 
cloud backend), the Lithops/Openwhisk environment and the Rotterdam cluster (over 
Openshift or Kubernetes clusters). However, it should be stressed that the presented 

                                                             
2 The Message Queuing Telemetry Transport  (MQTT) protocol has been used for this message 
exchange. 
3 https://github.com/class-euproject/phemlight-r   

https://github.com/class-euproject/phemlight-r
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results of the following section are independent of the underlying infrastructure, in 
the sense that they can be reproduced following the provided deployment steps in 
any other infrastructure setup.  

3.4 Example of CLASS workflow execution 
This section will provide an example of the execution of the use case applications over 
the CLASS SA.  In order to highlight the capabilities of the CLASS software architecture 
and provide a reproducible example that can be tested independently of the available 
infrastructure, the workflow depicted in Figure 7 has been used.  

 
Figure 7. Data analytics methods of the CLASS use case, executed on the CLASS 

software architecture 

 

The difference from the complete workflow of the use cases (depicted in Figure 2) is 
that, in this example, the data sources (i.e., the street cameras and the car) have been 
replaced by a deterministic source (i.e., a recorded video featuring a collision). This 
video is passed as an input to the object detection method. Upon the execution of the 
workflow, two different outputs are obtained: i) the output of the collision detection 
use case, which consists of the detected potential collisions that trigger the generation 
of a collision warning, and ii) the output of the air pollution estimation use case, which 
consists of a log file with the aggregated vehicle-related pollution emissions.   

It should be stressed that the aim of this section is only to demonstrate the ability of 
the CLASS SA to successfully execute the data analytics of the CLASS use cases. The 
performance evaluation of the analytics and the end to end execution of the use cases 
can be found in D1.6 [2]. 

 

3.4.1 Collision detection execution example 

To showcase the execution of the collision detection use case, two different examples 
have been selected.  
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In the first example, a recorded video that captures a collision scenario set up 
between two CLASS vehicles, i.e., the white Maserati smart car and a connected car 
has been used as the main source of data4. An example of a detected potential 
collision is shown in Figure 8. A visualization tool developed within CLASS has been 
employed to graphically show the output of the collision detection workflow 
execution. The information printed on the video frame has been extracted from the 
DKB at the cloud, and refers to the snapshot of a given video frame once trajectory 
prediction and collision detection have been applied.  

The green dots represent the tracked positions of the vehicles during the last 20 
frames. The red lines represent the predicted trajectories, which in this example, 
correspond to 8 predicted points estimated within 500 ms intervals (i.e., an overall 4 
seconds prediction of the vehicle movement). Finally, the detected potential collision 
is depicted as two black circles at the point where the predicted trajectories of the 
involved vehicles cross.   

 
Figure 8. Example of a detected potential collision between two CLASS vehicles in the 

MASA area 

The first experiment is not reproducible outside CLASS because the recorded video 
used as an input cannot be openly shared, due to privacy concerns (applying 
anonymization techniques since blurring before the video processing would affect the 
performance of the object detection analytics).  

Hence, a second fully reproducible example has been provided, based on a publicly 
available video. The video has been recorded as part of the “Red-Light Safety Camera 
Program5” and depicts a collision taking place at the intersection of Northbound Owen 

                                                             
4 In this specific execution, in addition to the recorded video, the workflow was processing two 
additional l ive streams from the cameras at the MASA area.  
5 The project has bene implemented by the Joint City of Fayetteville and and Cumberland County Liaison 
Committee. The video can be downloaded from https://www.fayettevillenc.gov/city-services/public-

https://www.fayettevillenc.gov/city-services/public-services/traffic-services/red-light-camera-program
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Drive and Village Drive, at Fayetteville NC. The execution of the CLASS analytics on this 
video return a collision warning before the actual collision takes place, as shown in 
Figure 9. For convenience (due to the low resolution of the image), only information 
relevant to the two involved vehicles is depicted.  

 
Figure 9. Example of a detected potential collision between two cars in a publicly 

available video 

3.4.2 Air pollution estimation example 

This section will present the output of the air pollution estimation over the first 
example (using the CLASS recorded video). It should be noted that in order to obtain 
meaningful statistics for the air pollution, a much longer execution of the workflow 
should take place (in the order of hours or days, if possible).  

The information regarding the number and type of vehicles present in a frame, as well 
as their estimated speed at a given timestamp (i.e., corresponding to a given snapshot 
processed at the edge) is passed as an input for the air pollution calculation based on 
the PHEMLight model (Figure 10). The output of the model, executed in the cloud, is 
the estimated amount of pollutants (in g/s) for the area captured by the camera 
(Figure 11).  

A simple web application has been developed in CLASS, to visualize the output of the 
PHEMLight calculation. In this example, the output of two cameras is shown in Figure 
12 (one corresponding to the intersection where the detected collision took place and 
the other to the live feed from a MASA street camera).  

                                                             
services/traffic-services/red-light-camera-program [Last accessed 30 June 2021) and is also included in 
the CLASS repository. 

 

https://www.fayettevillenc.gov/city-services/public-services/traffic-services/red-light-camera-program
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Similar results have been obtained using the second example. However, the air 
pollution visualization application has been customized to reflect the area covered by 
the street cameras in MASA and adapting it to another location is beyond the interest 
of CLASS.  

 

 
Figure 10. Example of the input file for the PHEMLight model generated by the CLASS 

data analytics at the edge 

 
Figure 11. Example of the PHEMLight output, estimating the level of different 

pollutants, aggregated by the ID of the video sources (LinkID) 
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Figure 12. Visualization of the PHEMLight output for two camera inputs at the MASA 

area in Modena, Italy. 
 

4 Deployment of the CLASS Software 
Architecture 

In this section, we will provide a step by step guide for the deployment of the CLASS 
SA components. The instructions are intended to help any interested developer to 
deploy the full stack of the CLASS software architecture, as described in Figure 1, and 
reproduce the examples provided in Section 3.4. In order to better highlight the usage 
of the different components, the deployment process has been organized into four 
subsections, corresponding to four different target scenarios (that could be executed 
independently or concurrently):   

i) Deployment of the SA components required for the execution of the collision 
detection use case (to reproduce the example of Section 3.4.1) 

ii) Deployment of the SA components required for the execution of the air 
pollution use case (to reproduce the example of Section 3.4.2) 

iii) Deployment of the SA components for the scaling of the workflow at the cloud 
using Rotterdam 

iv) Deployment of the EXPRESS platform 

The full deployment of the CLASS software architecture assumes the availability of 
computing resources at both edge and cloud level. All components are containerized, 
allowing for flexible and scalable deployment over heterogeneous infrastructures. 
However, it should be noted that for the integration of all the software components, 
additional configuration is needed, which is tightly dependent on the available 
infrastructure and networking (e.g., IP and port configurations, etc.).  

Finally, additional details and clarifications on the deployment of the different 
components can be consulted:  
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• In the technical deliverables of the corresponding work (as summarized in 
Table 1), namely:  WP2 (for COMPSs and dataClay), WP3 (for the edge 
platform), WP4 (for Rotterdam) and WP5 (for the data analytics platform).  

• In the readme files of the corresponding repositories of the CLASS project, at 
https://github.com/class-euproject.  

4.1  Collision detection use case deployment 
In this section, the steps to deploy and execute the software components for the 
collision detection use case are provided.  

4.1.1 Computation distribution layer and edge platform setup 

Preparation of the environment at the edge nodes 

At the edge level, due to the specific requirements of the data analytics employed for 
object detection, the availability of NVIDIA GPUs is required. The generated images 
assume an amd64 / x86_64 architecture, however, they could be adapted for other 
architectures, such as arm64.  

For convenience, three types of edge nodes are defined, based on their functionality:  

i) The master node is the edge node where the COMPSs master and the 
dataClay instance (dataClay-edge) are deployed. 

ii) The video-source nodes are the edge nodes that are connected to one or 
more video sources, generating the video capture on which object 
detection will be performed. The video sources can be cameras or recorded 
videos.  

iii) The worker nodes are the edge nodes where COMPSs workers are 
deployed by the COMPSs master, for the execution of the task-based data 
analytics workflow.  

In the simplest scenario, a single edge node could implement all three functionalities, 
however a higher number of nodes is recommended to exploit the distribution 
capabilities of the CLASS software architecture.  

In the provided deployment example, three edge nodes have been considered: a 
master node (with IP 192.168.0.4), a video-source node (with IP 192.168.2) and a 
worker node (with IP 192.168.0.3). The video-source node receives video frames from 
the publicly available collision video considered in the second example of Section 3.4.1 
(assigned the camera id 2405).  

The following steps should be taken at all edge nodes: 

 
1. Install Docker (version 19.03.06) from:  

https://docs.docker.com/engine/install/  

2. Install Docker Compose (version 1.19.0) from:   
https://docs.docker.com/compose/install/  

3. Clone the dataclay-class repository 

https://github.com/class-euproject
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
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$ git clone https://github.com/class-euproject/dataclay-
class.git -b dockers  

4. Download the docker image for the object detection based on the tkDNN 
library6, including CUDA and other dependencies required (e.g., OpenCV, 
TensorRT, etc.): 

$ docker pull bscppc/class-object-detection 

5. Download the docker image for the COMPSs-based application workflow. 
$ bscppc/class-object-tracking 

This image mainly includes: i) an adapted version of the COMPSs framework 
(release 2.7) with additional functionalities for the integration with the CLASS 
SA (the advanced workflow scheduler, introduced in D2.6 [1], and the 
connector with the Rotterdam CaaS, introduced in D4.7 [13]), and ii) the 
COMPSs application7, including the libraries and analytics methods for the 
tracking8 and deduplication. 

For the video-source nodes, the following additional steps must be followed 

6. Install the Nvidia Docker Toolkit (nvidia-docker2) from:   

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html 

7. Deploy the tkDNN, exporting the video source id and the port. The default 
values given below correspond to the example presented in Section 3. Note 
that if multiple video sources are connected to a single node, the 
corresponding tkDNN containers should be configured and launched. 

$ cd dataclay-class/dataclay-edge/ 

$ export CAM_ID=2405 

$ export TKDNN_PORT=5560 

$ docker-compose -f docker-compose-cuda.yml up 

Deployment of dataClay at the cloud 

With respect to the distribution layer, a dataClay backend must be deployed at the 
cloud, for the maintenance of the DKB where the information generated by the data 
analytics will be aggregated and stored.  

1. To prepare the environment at the cloud, the same steps 1-3 should be 
repeated at the cloud node (i.e., the installation of docker and docker 
compose, as well as the cloning of the dataClay-class).  

2. Update the parameters of the dataClay-class/dataClay-cloud/docker-
compose.yml file to match the available infrastructure.  

                                                             
6 https://github.com/class-euproject/tkDNN/tree/udpsockets  
7 https://github.com/class-euproject/COMPSs-obstacle-detection/blob/udpsockets/tracker.py  
8 https://github.com/class-euproject/class-edge/tree/udpsockets 

 

https://github.com/class-euproject/dataclay-class.git
https://github.com/class-euproject/dataclay-class.git
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://github.com/class-euproject/tkDNN/tree/udpsockets
https://github.com/class-euproject/COMPSs-obstacle-detection/blob/udpsockets/tracker.py
https://github.com/class-euproject/class-edge/tree/udpsockets
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3. Deploy dataClay at the cloud by executing: 
$ cd dataClay-class/dataClay-cloud 

$ ./launch_dockers.sh 

Configuration of the COMPSs master node at the edge 

After all the previous steps have been complete, the following configurations must 
take place at the master node.  

1. Update the parameters of the dataClay-class/dataClay-edge/docker-
compose.yml file to match the available infrastructure at the edge. Set the 
variables IMPORT_MODELS_FROM_EXTERNAL_DC_HOSTS and 
IMPORT_MODELS_FROM_EXTERNAL_DC_PORTS to reflect the IP and 
LOGICMODULE port defined at the dataClay backend at the cloud.  

2. Launch dataClay by executing  
$ cd dataclay-class/dataclay-edge/ 

$ ./launch_dockers 

3. Connect to the container by executing 
$ docker exec -it dataclayedge_object-tracking_1 bash 

and update the dataClay configuration in the file cfgfiles/client.properties to 
point to the dcinitializer container’s IP.  

4. Update the project.xml and resources.xml files to reflect the available 
resources (IPs, computing units, etc.) that can be used for the execution of 
COMPSs tasks. The COMPSs master node will use this information to deploy 
COMPSs workers where the application tasks will be distributed. More details 
and examples for the generation of this files can be found in COMPSs 
documentation9.  

4.1.2 Data analytics platform setup (Lithops/Openwhisk 
environment) 

This section provides the procedure for the execution of the Trajectory Prediction (TP) 
and Collision Detection (CD) data analytics methods using Lithops over an OpenWhisk 
environment. In CLASS, this environment has been set up over a Kubernetes cluster at 
the cloud node. The specific setup considered in CLASS, consisting of 1 master node 
and 4 workers, is described in detail in D5.5 [3].  

Setup of the Lithops/Openwhisk environment 

1. Install Ubuntu Server 18.04 on master and worker node machines. For optimal 
performance, it is recommended to choose worker nodes with similar 
hardware capabilities: https://releases.ubuntu.com/18.04/ 

                                                             
9 https://compss-doc.readthedocs.io/en/stable/Sections/01_Installation/06_Configuration_files.html  

https://releases.ubuntu.com/18.04/
https://compss-doc.readthedocs.io/en/stable/Sections/01_Installation/06_Configuration_files.html


 
D2.7 – Final release of the CLASS Softw are Architecture    
Version 1.0  

24 

2. Setup a Kubernetes cluster on the master and add the worker nodes. Some 
helpful guidelines can be found here: https://phoenixnap.com/kb/install-
kubernetes-on-ubuntu  

3. Add a storage class (e.g., NFS) for persistence support, as indicated here: 
https://kubernetes.io/docs/concepts/storage/storage-classes/  

4. Install OpenWhisk on top of Kubernetes cluster:  
https://github.com/apache/openwhisk-deploy-kube  

5. Setup a local docker registry following the instructions here:  
https://docs.docker.com/registry/deploying/  

6. Setup an mqtt broker, such as Eclipse Mosquitto:  
https://artifacthub.io/packages/helm/t3n/mosquitto  

7. Clone the Lithops repository from the CLASS github project to the root 
directory: https://github.com/class-euproject/lithops/tree/master/runtime  

8. Clone the collision detection repository from the CLASS github project to the 
root directory: https://github.com/class-euproject/collision-detection 

9. Create Lithops runtime by following the instructions on the readme file at: 
https://github.com/class-euproject/lithops/tree/master/runtime  

 

Trajectory Prediction and Collision Detection methods 

The following steps describe the procedure to configure and launch the trajectory 
prediction and collision detection analytics. These steps should take place after the 
completion of the setup described in Section 4.1.1 for the deployment of the dataClay 
cloud back-end. 

1. Update the collision-detection/update_all.sh script to reflect the setup. This 
script should include the location from where to retrieve the dataClay stubs, 
where the input data for the trajectory prediction and collision detection 
methods are stored. Specifically, an ssh connection to the VM where the 
dataClay cloud instance is launched must be established.  

2. Then run:   
$ cd collision_detection && ./update_all.sh 

3. Consequent updates that involve only dataclay stubs can be done faster by 
running the following script from the collision detection folder (again, after 
updating it to reflect the current setup):  

$ fast_update_all.sh  

4.1.3 Execution of the collision detection use case analytics 

1. Steam up workers environment running the following script from the collision 
detection folder in the Lithops environment (see section 4.1.2):  

$ cd collision_detection 

https://phoenixnap.com/kb/install-kubernetes-on-ubuntu
https://phoenixnap.com/kb/install-kubernetes-on-ubuntu
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/apache/openwhisk-deploy-kube
https://docs.docker.com/registry/deploying/
https://artifacthub.io/packages/helm/t3n/mosquitto
https://github.com/class-euproject/lithops/tree/master/runtime
https://github.com/class-euproject/collision-detection
https://github.com/class-euproject/lithops/tree/master/runtime
https://github.com/class-euproject/collision-detection/blob/master/update_all.sh
https://github.com/class-euproject/collision-detection/blob/master/fast_update_all.sh
https://github.com/class-euproject/collision-detection/blob/master/steam_up.sh
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$ ./steam_up.sh  

2. Enter in the dataclayedge_object-tracking_1 container where the COMPSs 
application is deployed by running.  

$ docker exec -it dataclayedge_object-tracking_1 bash 

3. Execute the COMPSs-based workflow, by properly setting the required IP and 
port settings of the COMPSs master node and of the video source node, as well 
as the path to the .xml configuration files (marked in red).  

$ runcompss --master_name=192.168.0.4 \ 
     --master_port=43001 \ 
     --python_interpreter=python3 \ 
     --project=config/project.xml \ 
     --resources=config/resources.xml \ 
     --storage_conf=/root/COMPSs-obstacle-
detection/cfgfiles/session.properties \ 
     --classpath=/root/COMPSs-obstacle-
detection/dataclay/dataclay.jar \ 
     tracker.py 192.168.0.2:5560 

Execution with a different video source 

For this example, the recorded video taken as an input has been included in the tkDNN 
image for convenience. In order to apply the workflow to a different video source, the 
video source configuration file should be updated. To do this:  

1. Access the tkDNN container at the video-source node 
$ docker exec -it dataclayedge_object-detection_1 bash 

2. Open the video source configuration file that can be accessed at: 

root/class-edge/data/all_cameras_en.yaml  

3. Modify the camera entry (or add a new one with a unique camera id) to reflect 
the parameters of the new video source. For reference, the current entry for 
the recorded is:  

 
To point to a new video source, the input variable should be updated with the 
new path, which can either be a different video file or a live stream from a 
camera. Furthermore, the projection matrix (pmatrix) for the new video should 
be provided, as well as a georeferenced tif file for the covered area (required 
for the conversion of pixel positions to GPS coordinates).  
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4.2 Air pollution estimation use case deployment 
The steps for launching the containerized air pollution application at the cloud are 
given next.  

Prepare the environment for PHEMLight execution at the cloud 

1. Pull the air pollution application (PHEMLight) and visualizer (shiny) at the 
cloud, both contained in a single image:  

$ docker pull bscppc/r-poll_dash 

2. Create a new folder named “pollutionMap” and clone the source code:  
$ mkdir ~/pollutionMap && cd ~/pollutionMap 

$ git clone https://github.com/class-euproject/pollution-
visualization  

$ git clone https://github.com/class-euproject/phemlight-r.git 

PHEMLight visualization 

1. In order to run the PHEMLight visualizer, before executing the COMPSs 
workflow at the edge, access the visualizer container (shiny_cont) with the 
following command:  

$ docker run -d --rm --name shiny_cont -p 5554:8888 \ 
       --name pollShiny_cont --group-add users  
   --user "$(id -u)"  
       -w="~/pollutionMap/pollution-visualization/R"  
  --mount source=pollVolume,destination=~/pollutionMap 

   jupyter/r-poll_dash Rscript dashboard-Modena.r 

2. Access the service from a browser, at the IP of the host VM at the cloud where 
PHEMLight is deployed, at port 5554, e.g., http://CLOUD-IP:5554/  

Note that the PHEMLight visualizer is customized for the MASA area in Modena where 
the CLASS use cases are executed, so it cannot be directly applied to the recorded 
video. To plot a different area: 

3. Access the “/R/createRoads.R” in the PHEMLight  container (phemlight_cont) 

4. Introduce lines to map the streets covered by the new video source(s) 

5. After modifying the script execute  
$ ‘Rscript R/create_roads.R’  

to create ‘Data/test_roads.csv’, which is the file which used by the map 
application 

Preparation of the COMPSs workflow at the edge 

1. For the air pollution estimation use case, the same COMPSs workflow 
developed for the collision use case is used. Hence, if not previously set up, the 
steps described in Section 4.1.1 must be followed.  

2. The COMPSs workflow at the edge will generate the necessary input files and 
launch the air pollution container (phemlight_cont) at the selected intervals 

https://github.com/class-euproject/pollution-visualization
https://github.com/class-euproject/pollution-visualization
https://github.com/class-euproject/phemlight-r.git
http://cloud-ip:5554/
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(everytime the air_pollution_computation method is called). This is done by 
establishing an ssh connection to the cloud and launch a script that starts the 
container. The details of this connection must be configured appropriately by 
accessing the container: 

$ docker exec -it dataclayedge_object-tracking_1 bash 

and modifying the tracker.py where the ssh connection is established (marked 
in red):  

ssh CLOUD_USERNAME@CLOUD_IP nohup bash ~/pollutionMap/phemlight-
r/dockerScripts/phemlightCommand.sh {a} {b} {c} &>/dev/null & 

Make sure to  configure the SSH keys between the involved machines (master 
and cloud node where PHEMLight is executed) so that a passwordless 
connection can be established.   

3. In the same file (tracker.py), the frequency for invoking the air pollution 
computation can be also configured, by setting the parameter 
NUM_ITERS_POLLUTION. By default, the computation is called every 300 
frames (approximately every 30 seconds). 

4. Finally, to execute the use case, at the master node (the edge node 
192.168.0.4) run the COMPSs worklow as indicated in Section 4.1.3, but with 
the “with_pollution” flat, i.e.,: 

$ runcompss --master_name=192.168.0.4 \ 
     --master_port=43001 \ 
     --python_interpreter=python3 \ 
     --project=config/project.xml \ 
     --resources=config/resources.xml \ 
     --storage_conf=/root/COMPSs-obstacle-
detection/cfgfiles/session.properties \ 
     --classpath=/root/COMPSs-obstacle-
detection/dataclay/dataclay.jar \ 
     tracker.py 192.168.0.2:5560 \ 
     --with_pollution 

4.3 Deployment of the cloud analytics platform 
(Rotterdam) 

The steps for installing Rotterdam at the cloud node have been provided in detail in 
the Section 4.2 of deliverable D4.7 [13]. For convenience a summary of the steps is 
included here, but the complete set of instructions to follow should be consulted in 
D4.7. 

1. Install the container environment (Openshift or Kubernetes cluster) 

2. Install and configure monitoring tools (Prometheus Pushgateway and Grafana) 

3. Install Rotterdam, available in the CLASS repository:     
https://github.com/class-euproject/Rotterdam 

4. A docker image can also be found in:  
https://hub.docker.com/r/atosclass/rotterdam-caas  

https://github.com/class-euproject/Rotterdam
https://hub.docker.com/r/atosclass/rotterdam-caas
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5. Install and configure the SLA manager, provided as a docker image in:  
https://hub.docker.com/r/atosclass/slalite  

6. To launch the COMPSs-based application (e.g., the air pollution estimation or 
any other task-based application in general), the COMPSs resource.xml and 
project.xml files must be updated accordingly to reflect the Rotterdam 
configuration. For specific details, see D4.7. 

4.4 Deployment of the EXPRESS platform 
The EXPRESS prototype is available at the CLASS git repository at 
https://github.com/class-euproject/express and has been delivered as a standalone 
component of the CLASS SA. Detailed instructions on its installation can be found in 
Section 3.1.2 of deliverable D5.4 [7].  

 

 

 

Acronyms and Abbreviations 
API – Application Programming Interface  
Caas – Container as a Service (CaaS) 
CLI – Command Line Interface 
D – Deliverable 
DAG – Direct Acyclic Graph 
DKB – Data Knowledge Base 
DNN – Deep Neural Network  
EXPRESS – EXtended PREdictability ServerlesS  
FaaS – Function as a Service  
MASA – Modena Automotive Smart Area 
MQTT – Message Queuing Telemetry Transport 
MS – Milestone 
SA – Software Architecture 
SDK – Software Development Kit 
SLA – Service Level Agreement  
QoS – Quality of Service 
WP – Work Package 

 

 

 

 

https://hub.docker.com/r/atosclass/slalite
https://github.com/class-euproject/express
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