
D3.5 Final release of the real-time analysismethods and tools on the edge
Version 1.0

Document Information
Contract Number 780622Project Website https://class-project.eu/Contractual Deadline M29, May 2020 (Due to COVID situation this deliver-

able has been submitted on M31, July 2020)Dissemination Level PUNature DECAuthor(s) Roberto Cavicchioli (UNIMORE)Contributor(s)Reviewer(s) Danilo Amendola (CRF)Keywords Tool - Real time - Schedulability - Heterogenous

Notices: The research leading to these results has received funding
from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No “780622”.

c©2018 CLASS Consortium Partners. All rights reserved.



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

Change LogVersion Author Description of Change
V0.1 Roberto Cavicchioli (UNIMORE) First version

V0.2 Danilo Amendola (CRF) Review

V0.3 Roberto Cavicchioli (UNIMORE) Review comments addressed

V1.0 Maria A.Serrano (BSC) Final version, ready to EC revision

1



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

Contents
1 Introduction 4
2 Systemmodel 5
2.1 Architecture model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The HPC-DAG task model . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Specification tasks . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Concrete tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Autoware: a complex real-time framework for autonomous driving 8
4 Scheduling analysis 11
4.1 Alternative patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Tagged Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Deadlines and offsets assignment . . . . . . . . . . . . . . . . . . . 13

4.4 Single engine analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Anticipating the activation of sub-tasks . . . . . . . . . . . . . . . . 16

4.6 Preemption-aware analysis . . . . . . . . . . . . . . . . . . . . . . . 16

5 Allocation 18
5.1 Allocation of task specifications . . . . . . . . . . . . . . . . . . . . 18

5.2 Sequential allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Parallel allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Related work 21
7 Experimental results and discussions 23
7.1 Task set generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.2 Simulation results and discussions . . . . . . . . . . . . . . . . . . . 24

7.3 Preemption cost simulation . . . . . . . . . . . . . . . . . . . . . . . 25

7.4 Real World application on the NVIDIA Jetson AGX Platform . . . . . 26

7.4.1 Hardware and software platform . . . . . . . . . . . . . . . 26

7.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 28

8 Conclusions and future work 30

2



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

List of Figures
1 Task specification and concrete tasks . . . . . . . . . . . . . . . . . 7

2 The NDT algorithm of the Autoware localization package modeled

using HPC-DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Tagged tasks for the concrete task of Figure 1b . . . . . . . . . . . 12

4 Example of offset and local deadline . . . . . . . . . . . . . . . . . 14

5 Maximal sequential subset example . . . . . . . . . . . . . . . . . . 17

6 Schedulability and utilization results . . . . . . . . . . . . . . . . . . 23

7 Preemption cost Lemma 3 against Theorem 2 . . . . . . . . . . . . 26

8 Example of computer vision pipeline of NVIDIA VPI . . . . . . . . . 28

9 Execution times of different tasks (for readability, the Y axis has a

variable scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Deadline misses rate for real-task execution on Jetson AGX board . 30

3



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

1 Introduction
Task 3.3. “Real-time analysis methods and tools on the edge”. This task has

developed, in collaboration with Task 3.2, the set of real-time analysis techniques

deployed at both development (static) and execution (dynamic) time that will

guarantee the responsiveness of big data analytics on the edge. At development

time, these techniques will statically assign computing resources on the edge

(e.g., CPU time, cores, accelerators time) to guarantee time predictability while

ensuring the right level of performance. At execution time, this task will provide

analysis tools (in the form of schedulability test) capable of dynamically adjusting

the execution for improving performance while providing time predictable level.

The target at MS3 is the set of static and dynamic tools implemented in the

CLASS architecture ready to evaluate all the use cases. This milestone has

been subject to constraints that have slowed progress behind expectations,

have already lead to a 2-month delay, and have been reported separately to

the Project Officer. To avoid further delay in delivery, we deliver all planned

content under some mitigations that are expected to complete shortly after

the milestone. In particular, the principal edge component, the smart cameras,

have not yet been deployed in the MASA area, neither a working prototype has

been under study. To comply with the request of scheduling and analyzing a

sufficiently complex real world use case, we applied our technique to a subset

of the well-known Autoware library for autonomous driving.

This Deliverable is an extension of D3.4 and treats more in depth the topic

shown there.

The model of real-time task called HPC-DAG (Heterogeneous Parallel Con-

ditional Directed Acyclic Graph) is presented in Section 2. Thanks to the graph

structure, the HPC-DAG model allows specifying the degree of parallelism of

real-time sub-tasks. The designer can use special alternative nodes in the graph
to model alternative implementations of the same functionality on different

computing engines to be selected off-line, and conditional nodes in the graph
to model if-then-else branches to be selected at run-time. Alternative nodes

are used to leverage the diversity of computing accelerators within our target

platform. In Section 3, we demonstrate the use of the HPC-DAG model by

representing a module of the Autoware library.

Then, in Section 4, we present a schedulability analysis that will be used in

Section 5 by a set of allocation heuristics to map tasks on computing platforms

and to assign scheduling parameters. In particular, we present a novel technique

to reduce the pessimism due to high preemption costs for schedulability analysis

(Section 4.6).

After discussing related work in Section 6, our methodology is evaluated in

Section 7 by comparing it with state-of-the-art models and algorithms.
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2 Systemmodel
2.1 Architecture model
A heterogeneous architecture is modeled as a set of execution engines Arch =
{e1, e2, . . . , em}. An execution engine is characterized by (i) its execution capabili-
ties, (e.g. its Instruction Set Architecture), specified by the engine’s tag, and (ii) its
scheduling policy. An engine’s tag tag(ei) indicates the ability of a processor to
execute dedicated tasks.

As an example, a Xavier based platform such as the NVIDIA pegasus that will
be installed in the CLASS cars, can be modeled using 16 engines for a total of
five different engine tags: 8 CPUs, 2 dGPUs, 2 iGPUs, 2 DLAs and 2 PVAs.
Tags express the heterogeneity of modern processor architecture: an engine

tagged by dGPU (discrete GPU) or iGPU (integrated GPU) is designed to efficiently

run generic GPU kernels, whereas engines with DLA tags are designed to run

deep learning inference tasks. A deep learning task, such as the DNN for object
detection discussed in deliverable D1.4, can be compiled to run on any engine,

including CPUs and GPUs, however its worst-case execution time will probably

be lower when running on accelerators such as a GPU and a DLA. Relevant

benchmarks with respect to inference performance on GPU and DLA can be

found in [26].

In this work, we allow the designer to compile the same task on different al-

ternative engines with different tradeoffs in terms of performance and resource

utilization, so to widen the space of possible solutions. As we will see in the next

section, the HPC-DAG model supports alternative implementations of the same
code. During the off-line analysis phase, only one of these alternative versions

will be chosen depending on the overall schedulability of the system.

Communication is an important issue when considering the execution of

real-time tasks on heterogeneous architectures. In modern GPUs, data transfers

are performed by special engines called copy engines. A copy engine is a co-
processor in charge of moving data between an address space visible to the CPU

to an address space visible to the GPU. This translates in two physical separate

memory devices in case of discrete GPUs, whereas for integrated GPUs system

RAM is shared among both CPU cores and compute accelerators. We treat copy

engines as processing units having CP tag, in which we schedule communication
tasks.

Engines are further characterized by a scheduling policy (e.g. Fixed Priority or

Earliest Deadline First), which can be preemptive or non-preemptive. Our model
allows different engines to support different scheduling policies. As shown in

Section 4, our methodology may cope with different schedulability analyses

for each independent engine. However, to simplify the presentation, in this

deliverable we focus on preemptive Earliest Deadline First (EDF). To help the reader
to identify the tags easily, we use the pink color for CPU tag, the beige color for

GPU tag, the blue color for DLA, the violet for CP tag and the green for the PVA

tag.
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2.2 The HPC-DAG task model
2.2.1 Specification tasks
A specification task is a Directed Acyclic Graph (DAG), characterized by a tuple
τ = {T,D,V,A,Γ, E}, where: T is the period (minimum interarrival time); D is
the relative deadline; V is a set of graph nodes that represent sub-tasks; A is
a set of alternative nodes; and Γ is a set of conditional nodes. The set of all the
nodes is denoted byN = V ∪ A ∪ Γ. The set E is the set of edges of the graph
E : N ×N .
A sub-task v ∈ V is the basic computation unit. It represents a block of

code to be executed by one of the engines of the architecture. A sub-task is

characterized by:

• A tag tag(v) which represents the engines where it is eligible to execute. A
sub-task can only be allocated onto an engine with the same tag;

• A worst-case execution time C(v) when executing the sub-task on the
corresponding engine processor.

In this work, we do not model the parallelization inside the GPU. Instead, we

model a GPU sub-task as a single executing context able to potentially exploit

all the parallel resources of the GPU’s execution engine. This is compliant with

the GPU abstraction that has been proposed in [10] that assumes only one GPU

context being resident within the GPU at a given time. As an example, if the GPU

node is an image processing workload, parallelization is exploited at the level

of pixels of the image and not by processing multiple images at the same time

instant.

A conditional node γ ∈ Γ represents alternative paths in the graph due to non-
deterministic on-line conditions (e.g. if-then-else conditions). Non-determinism

implies that at run-time, only one of the outgoing edges of γ is executed, but it
is not possible to know in advance which one.

An alternative node a ∈ A represents alternative implementations of parts of
the graph/task. During the configuration phase (which is detailed in Section 5.1),

our methodology selects one among many possible alternative implementations

of the program by selecting only one of the outgoing edges of a and removing
(part of) the paths starting from the other edges. This can be useful when

modeling sub-tasks than can be executed on different engines with different

execution costs.

An edge e(ni, nj) ∈ E models a precedence constraint (and related com-
munication) between node ni and node nj , where ni and nj can be sub-tasks,
alternative nodes or conditional nodes.

The set of immediate predecessors of a node nj , denoted by pred(nj), is the
set of all nodes ni such that there exists an edge (ni, nj). The set of predecessors
of a node nj is the set of all nodes for which there exists a path toward nj . If
a node has no predecessor, it is a source node of the graph. In our model we
allow a graph to have several source nodes. In the same way we define the set

of immediate successors of node nj , denoted by succ(nj), as the set of all nodes
nk such that there exists an edge (nj, nk), and the set of successors of nj as the
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set of nodes for which there is a path from nj . If a node has no successors, it is
a sink node of the graph, and we allow a graph to have several sink nodes.

2.2.2 Concrete tasks
A concrete task τ = {T,D,V,Γ, E} is an instance of a specification task where
all alternatives have been removed by making implementation choices. In the

following, the volume vol(τ) denotes the total cumulative WCET of the concrete
task. It is computed in linear time in the number of conditional vertices [5].

Before explaining how to obtain a concrete task from a specification task, we

present an example.

Example 1. Consider the task specification described in Figure 1a. Each sub-task
node is labeled by the sub-task id and engine tag. Alternative nodes are denoted by
square boxes and conditional nodes are denoted by diamond boxes. The black boxes
denote corresponding junction nodes for alternatives and conditional.

vCPU
1

vCPU
2

A A

vdGPU
3 vDLA

4 vdGPU
5

vCPU
8

C C
vDLA
6

vdGPU
7

(a) Task τ

vCPU
1

vCPU
2

C vCPU
8C

vDLA
6

vdGPU
7

(b) Concrete task τ

Figure 1: Task specification and concrete tasks

Sub-tasks vCPU1 and vCPU2 are the sources (entry points) of the DAG. vCPU1 , vCPU2 are
marked by the CPU tag and can run concurrently: during the off-line analysis they
may be allocated to the same or to different engines. Sub-task vDLA

4 has an outgoing
edge to vdGPU5 , thus sub-task vdCPU5 cannot start its execution before sub-task vDLA

4 has
completed. Sub-tasks vCPU1 and vCPU2 have each one outgoing edge to the alternative
node A. Thus, τ can continue the execution either:
1. by following vdGPU3 and then vDLA

4 ,vdGPU5 and finishing its instance on vCPU8 ;
2. or by following the conditional node F and select, according to an unde-
termined condition evaluated on-line, either to execute vDLA

6 or vdGPU7 , and
finishing its instance on vCPU8 .

The two subgraphs are alternative ways to execute the same functionalities at
different costs. Figure 1b represents one of the concrete tasks of τ , where during the
analysis, alternative execution (vdGPU3 , vDLA4 , vdGPU5 ) has been dropped.
Conditional nodes and alternative nodes always have at least two outgoing

edges, so they cannot be sinks. For the sake of simplicity, we also assume that

conditional nodes always have at least one predecessor node, so they cannot

be sources.

7



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

In this study, we restrict ourselves to well-nested graphs: for every alternative
(resp. conditional) node, there is always a corresponding closing node denoted
by a black square (resp. black diamond) in Figure 1a, such that all paths starting

from the alternative (resp. conditional) node contain the corresponding closing

node. Please notice that relaxing this assumption would mean allowing edges

from nodes that may potentially not be executed (e.g., because they belong to

the false branch in a conditional statement) to nodes that are always executed,

making it complex to track task dependencies at runtime.

In our model, data transfers among tasks can be modeled by special sub-

tasks tagged with CP (Copy-Engine).
We consider a sporadic task model, therefore parameter T represents the

minimum inter-arrival time between two instances of the same concrete task.

When an instance of a task is activated at time t, all source sub-tasks are simul-
taneously activated. All subsequent sub-tasks are activated upon completion

of their predecessors, and sink sub-tasks must all complete no later than time

t+ D. We assume constrained deadline tasks, that is D ≤ T.
We now present a procedure to generate a concrete task τ from a speci-

fication task τ , by selecting one successor for all alternatives. The procedure
starts by initializing V = ∅, Γ = ∅. First, all the source sub-tasks of τ are added
to V. Then, for each immediate successor node nj of a node ni ∈ {V ∪ Γ}: if
nj is a sub-task node (a conditional node, respectively), it is added to V (to Γ,
respectively); if it is an alternative node, we consider the selected immediate

successor nk of nj and we add it to V or to Γ, respectively. The procedure is
iterated until all nodes of τ have been visited. The set of edges E ⊆ E is updated
accordingly.

We denote by Ω(τ) the set of all concrete tasks of a specification task τ .

3 Autoware: a complex real-time framework forautonomous driving
In this section, we present how a complex real-time application can be modeled

using the HPC-DAG task model.

Autoware1 [20] is an open source autonomous driving framework that pro-
vides a set of software modules to perform sensing, computing and actuation

for autonomous vehicles. Autoware can process different types of sensors data

such as lidars, cameras, light detectors, etc., with the goal of creating a model

of the surrounding environment that is then used to take actuation decisions.

Autoware is composed of several packages ranging from vehicle localization to
path planning and following. In this deliverable, we focus on the localization
package.

The goal of this package is to compute a precise position of the autonomous

vehicle in the environment. Therefore, it matches Lidar data with offline map

data by means of the Normal Distributions Transform (NDT) algorithm. Autoware
1
https://github.com/autowarefoundation/autoware
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provides two implementations of NDT, a pure CPU implementation (all func-
tions are implemented on the CPU) and a pure GPU-based implementation (all

functions are implemented on the GPU).

We modeled the NDT algorithm with our HPC-DAG task model. Contextually,

we have rewritten the NDT implementation to provide finer alternatives, by

allowing the programmer to alternate different implementations at the function-

call level.

Our task model allows the designer to express parallelization possibilities

in two different ways: (i) using alternative nodes to express several off-line

alternative implementations, each one having a different parallelism; or (ii) using

conditional nodes for expressing alternative parallelization options to be chosen

online based on runtime conditions. In the first case, the selection is done offline

and does not change at run-time. In the second case, selection is performed

online, e.g., depending on given data, sensors inputs, time to deadline, etc. When

deriving a schedulability analysis, this latter case is harder, since the branch

to execute is not known a priori, needing to consider the worst-case scenario

among all the possible conditional branches. A similar approach can be found

in [34–36].

To semplify the view of the complex graph, we report in Figure 2 only the

first part of it, the remaining tasks from the NDT package will execute starting

from node ndt_next. The part of the NDT presented here performs functions
computePointGradients and computeHessian. Both can run on the CPU (with differ-
ent variable configurations of threads) and on the GPU. The entry point is the

node init, which reads data from different sources. Then, one of three alternative
paths can be selected.If alternative A1 is selected, function computePointGradients
is run in a fork/join fashion, using a scatter thread (CPGS1_C) and two parallel
threads CPGP1_C and CPGP2_C before collecting the result on thread GPGG1_C.
The same processing can be achieved in another parallel configuration (the

A2 alternative), by distributing the processing on 4 working threads. Finally, the
compute point gradients can run on the GPU by following the alternative node

A3. In this latter path, data must be copied from the CPU to the GPU by invoking

CP1_M, then the actual processing can start by launching the GPU kernel CPG_G.
Just after the completion of the point gradient kernel, two alternative paths

are possible, namely A4 and A5. If A4 is selected, condition HESO_2 is evalu-
ated to check whether the function computeHessian must be performed. We
highlight that such a condition is evaluated online, based on the result of the

previous processing. Function computeHessian can be executed later on the GPU.
Therefore, there is no need to copy buffers from host memory and CHG_1 GPU
kernel can immediately start. If the hessian computation has been selected to

run on any of the CPU fork join configurations delimited within the alt_3 block,
and still assuming the precedent compute gradient run on the GPU, then the

preliminary copy CP2_M is needed. Trivially, if the compute point gradients have
been computed on any of the available CPU thread configurations and we elect

to later compute the hessian on the GPU, then we will need the preliminary copy

CP3_M, the GPU kernel itself CHG_2 and the copy back function CP5_M.
Typically there are more CPUs available than GPUs. Therefore, the GPUs

are powerful but scarce resources, and the sub-task allocation must be care-

9



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

init

alt_1

CPGS1_C

A1

CPGS2_C

A2

CP1_M

A3

CPGP1_C CPGP2_C

CPGG1_C

HESO_1

CPGP3_C CPGP4_C CPGP5_C CPGP6_C

CPGG2_C

CPG_G

alt_2

CP2_M

A5

HESO_2

A4

alt_3

CP3_M

A6

CHS_C

A7

HESC_1

CP5_M

CHG_2

ndt_next

CHP1_C CHP2_C CHP3_C

CHG_C

HESC_2

CHG_1

CP4_M

Figure 2: The NDT algorithm of the Autoware localization package modeled using

HPC-DAG.
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fully planned to avoid oversubscribing the GPUs and therefore decreasing the

schedulability ratio.

With this example we showed that exploring the space of alternatives in

such complex architectures and domain of applications is not a trivial aspect.

The small example of Figure 2 contains 7 different concrete tasks. In the en-

tire Autoware we counted more than 160 alternatives implementations of its

functionalities, leading to an exponential number of combinations. Therefore,

without a proper task model the system designer would simply be unable to

rely on a sound schedulability analysis for deriving proper node-to-engine allo-

cation policies. Our proposed HPC-DAG model is not only able to capture both

the off-line complexity of defining multiple implementation of the same node,

but it is also able to account for runtime task reconfigurations due to online

conditionals. Such formal artefacts will be instrumental for the schedulability

analysis we present in the following sections.

4 Scheduling analysis
In this work, we consider partitioned scheduling. Each engine has its own sched-

uler and a separate ready-queue. Sub-tasks are allocated (partitioned) onto

the available engines so that the system is schedulable. Partitioned scheduling

allows to use the well-known single processor schedulability tests, which make

the analysis simpler and reduce the overhead due to thread migration compared

to global scheduling.

The analysis presented in the Deliverable is modular, i.e., engines may have

different scheduling policies, as described in Section 4.4. For the sake of simplic-

ity, we will adopt preemptive-EDF (Earliest Deadline First) as a representative

scheduler. EDF is known to be optimal for arbitrary collections of jobs on a

single resource platform, and it has been recently implemented also for GPU

platforms (see Section 6). The preemption cost estimation and analysis reported

in Section 4.6 will consider both preemptive EDF and fixed priority scheduling

(e.g. Deadline monotonic).

4.1 Alternative patterns
Given a specification task τ , we have to select one of the possible concrete
tasks before proceeding to the allocation and scheduling of the sub-tasks on

the computing engines. Since the number of combinations can be very large,

we propose a heuristic algorithm based on a greedy strategy (see Section 5). In
particular, we explore the set of concrete tasks in a certain order. The order

relation � sorts concrete tasks according to their total execution time.

Definition 1. Let τ′, τ′′ be two concrete tasks of specification task τ. The partial
order relation � is defined as:

τ′ � τ′′ =⇒ vol(τ ′) ≥ vol(τ ′′) (1)
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In the next section, we will define a second order relationship� that sorts
concrete tasks based on their engine tags.

4.2 Tagged Tasks
One concrete task may contain sub-tasks with different tags which will be allo-

cated on different engines. Before proceeding to allocation, we need to select

only sub-tasks pertaining to a given tag. We call this operation task filtering.
We start by defining an empty sub-task as a sub-task with null computation

time.

Definition 2 (Tagged task). Let τ = {T,D,V,Γ, E} be a concrete task. Task τ(tagi)
is a tagged task of τ iff
• τ(tagi) = {T,D,Vi,Γi, Ei} is isomorphic to τ , that is the graph has the same
structure, the same number of nodes of the same type, and the same edges
between corresponding nodes;
• let v ∈ V be a sub-task of τ , and let v′ ∈ Vi be the corresponding sub-task
of τ(tagi) in the isomorphism. If tag(v) = tagi, then C(v′) = C(v), else
C(v′) = 0;
• Γi = Γ.

We denote with S(τ) = {τ(tag1), . . . τ(tagK)} the set of all possible tagged tasks of
τ .

vCPU
1 vCPU

2

C

vCPU
8

C
∅ ∅

(a) τ(CPU)

∅ ∅

C

∅

C

vDLA
6 ∅

(b) τ(DLA)

∅ ∅

C

∅

C

∅ vdGPU
7

(c) τ(dGPU)

Figure 3: Tagged tasks for the concrete task of Figure 1b

Each concrete task generates as many tagged tasks as there are tags in the
target architecture. Figure 3 shows the three tagged tasks for the concrete task

in Figure 1b.

Definition 3 (� order relationship). Assume the architecture supportsK different
tags. Let n(tag) denote the number of computing engines labeled with tag. Assume
that tags are ordered by increasing n(tag), that is n(tagi) < n(tagj) =⇒ i < j.

12
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Let τ′, τ′′ be two concrete tasks of specification task τ, and let S(τ ′) = {τ ′(tag1), . . . , τ ′(tagK)}
and S(τ ′′) = {τ ′′(tag1), . . . , τ ′′(tagK)} be the respective tagged tasks.
The order relation τ′ � τ′′ is defined as follows:

τ′ � τ′′ =⇒

∃ 0 ≤ i ≤ K

{
vol(τ ′(tagj)) = vol(τ ′′(tagj)) ∀j < i

vol(τ ′(tagi)) < vol(τ ′′(tagi))

Relationship � gives priority to concrete tasks that allocate less load on
scarce resources: if there are few execution engines with a certain tag, and

there is a large number of sub-tasks requiring allocation to that specific engine,

the relation order prefers alternative patterns with lower workload for those

engines.

4.3 Deadlines and offsets assignment
Meeting timing constraints of a concrete task depends on the allocation of the

sub-tasks onto the different execution engines. As these sub-tasks communicate

through shared buffers, they are forced to respect the execution order dictated

by the precedence constraints imposed by the graph structure.

To reduce the complexity of dealing with precedence constraints directly,

we impose intermediate offsets and deadlines on each sub-task. In this way,

precedence constraints are automatically respected if every sub-task is activated

after its offset and completes no later than its deadline.

Many authors have proposed techniques to assign intermediate deadlines

and offsets to task graphs. Here we use techniques similar to those proposed

in [23] and [32].

Most of the deadline assignment techniques are based on the computation of

the execution time of the critical path. A path Px = {v1, v2, · · · , vl} is a sequence
of sub-tasks of task τ such that:

∀vl, vl+1 ∈ Px,∃e(vl, vl+1) ∈ E.

Let P denote the set of all possible paths of task τ . The critical path Pcrit(τ) ∈
P is defined as the path with the largest cumulative execution time of the
sub-tasks.

We define the slack Sl(P,D) along path P of τ as :

Sl(P,D) = D−
∑
v∈P

C(v)

The assignment algorithm starts by assigning an intermediate relative dead-

line to every sub-task along a path by distributing the path’s slack as follows:

D(v) = C(v) + calculate_share(v, P )

The calculate_share function computes the slack for sub-task v along the
path. This slack can be shared according to two alternative heuristics:
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• Fair distribution: assigns slack as the ratio of the original slack by the
number of sub-tasks in the path:

calculate_share(v, P ) =
Sl(P,D)

|P |
(2)

• Proportional distribution: assigns slack according to the contribution of
the sub-task WCET in the path:

calculate_share(v, P ) =
C(v)

C(P )
· Sl(P,D) (3)

Once the relative deadlines of the sub-tasks along the critical path have been

assigned, we select the next path in order of decreasing cumulative execution

time, and assign the deadlines to the remaining sub-task by appropriately sub-

tracting the already assigned deadlines. The complete procedure has been

described in [32].

Let O(v) be the offset of a subtask with respect of the arrival time of the
task’s instance. The sum of the offset and of the intermediate relative deadline

of a subtask is called local deadline O(v) + D(v), and it is the deadline relative to
the arrival of the task’s instance.

The offset of a subtask is set equal to 0 if the subtask has no predecessors;

otherwise, it can be computed recursively as the maximum among the local

deadlines of the predecessor sub-tasks.

v8v1 v2
CPU

iGPU

DLA

v6

v7
v7 Local deadline

v7 relative deadline

O(v6)

Absolute deadlineActivation time

task relative deadline

Figure 4: Example of offset and local deadline

Figure 4 illustrates the relationship between the activation times, the inter-

mediate offsets, relative deadlines and local deadlines of the sub-tasks of the

concrete task of Figure 1b. We assume that v1, v2, v8 have been allocated on the
same CPU whereas v6 and v7 each on a different engine. The activation time is
the absolute time of the arrival of the sub-task instance. The activation time of a

source sub-task corresponds to the activation time of the task graph. The offset

is the interval between the activation of the task graph and the activation of the

sub-task. The local deadline is the interval between the task graph activation

and the sub-task absolute deadline.

14



D3.5 Final release of the real-time analysis methods and tools on the edge

Version 1.0

Definition 4. Sub-task v ∈ Vτ is feasible if for each task instance arrived at aj ,
sub-task v executes within the interval bounded by its arrival time a(v) = aj + O(v)
and its absolute deadline a(v) + D(v).
Lemma 1. A concrete task (resp. tagged task) is feasible if all its sub-tasks are
feasible.
Proof. By the definition, the local deadline of the sink sub-tasks is equal to the
deadline of the task D. Moreover, the offset of a sub-task is never before the
local deadline of a preceding sub-task. Therefore 1) the precedence constraints

are respected, 2) if sink sub-tasks are feasible, then the concrete task (tagged

task, respectively) is feasible.

4.4 Single engine analysis
In this section, we assume that sub-tasks have already been assigned offsets

and deadlines, and they have been allocated on the platform’s engines, and

we present the schedulability analysis to test if all tasks respect their deadlines

when scheduled by the Earliest Deadline First (EDF) algorithm.

Theorem 1. Let T be a set of task graphs allocated onto a single-core engine. Task
set T is schedulable by EDF if and only if:∑

τ∈T

dbf(τ, t) ≤ t,∀t ≤ t∗ (4)

The dbf is the demand bound function [6] for a task graph τ in interval t. The
demand bound function is computed as the worst-case cumulative execution

time of all jobs (instances of sub-tasks) having their arrival time and deadline

within any interval of time of length t. For a task graph, the dbf can be computed
as follows:

dbf(τ, t) = max
v∈τ

∑
v′∈τ

⌊
t− Õ(v′)− D(v′) + T(τ)

T(τ)

⌋
C(v′) (5)

where
2
: Õ(v′) = (O(v′)− O(v)) mod T(τ)

In our model, a task graph may contain conditional nodes, which model alter-
native paths that are selected non-deterministically at run-time. To compute the

dbf for a tagged task that contains conditional nodes, we must first enumerate
all possible conditional graphs by using the same procedure as the one used for

generating concrete tasks from specification tasks. Hence, the dbf of a tagged
task in interval t can be computed as the largest dbf among all the possible
conditional graphs. Similar analysis techniques can be found in [3].

2
We remind that the remainder of a/b is by definition a positive number r such that a = kb+r.
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4.5 Anticipating the activation of sub-tasks
Given an instance of sub-task v with arrival at a(v) and local deadline at D(v),
at run-time it may happen that all instances of the preceding sub-tasks have

already completed their execution before a(v). In this case, we activate the
sub-task as soon as the preceding sub-tasks have finished with the same local
deadline D(v).

Lemma 2. Consider a feasible set of sub-tasks allocated on a set of engines and
scheduled by EDF. If a sub-task is activated as soon as all predecessor sub-tasks have
finished, with the same local deadline, the set remains schedulable.
Proof. Descends directly from the sustainability property of EDF [7]. In fact, by
anticipating the activation of the sub-task without modifying its local deadline,

the sub-task will be scheduled with a longer relative deadline, and the demand

bound function will not increase.

From an implementation point of view, this technique avoids the need to

set-up activation timers for intermediate tasks; moreover, it allows us to reduce

the pessimism of the analysis in the presence of high preemption costs, as we

will see in the next section.

4.6 Preemption-aware analysis
The cost of preemption may significantly vary depending on the preempted task

and on the engine upon which the task is running. In recent GPUs for instance,

preempting an executing task can be a costly operation (see Section 7.3). Due to

the differences in preemption granularity in GPUs, preempting a graphics kernel

induces a larger cost compared to preempting a compute-only GPU kernel (e.g.,

a CUDA kernel). Therefore, we need to account for the cost of preemption in the

analysis. From now on, a sub-task will be also characterized by pc(v), the timing
cost of preempting the sub-task v.
A simple (although pessimistic) approach is to always consider the worst-case

preemption cost as part of the worst-case computation time of the preempting

task. Let pc(vj) denote the cost of preempting sub-task vj . In the following, we
consider the EDF and fixed priority (FP) scheduling policies. In the latter case,

P (v) denotes the fixed priority assigned to vertex v.

Lemma 3. Let V = {v1, v2, · · · , vK} be a set of sub-tasks to be scheduled by EDF
(resp. FP) on a single engine.
Consider Vpc = {v′1, v′2, · · · , v′K}, where v′i has the same parameters as vi, ex-

cept for the WCET C(v′i) = C(vi) + pci and pci = max{pc(v)|v ∈ V ∧ D(v) >
D(vi)(resp. P (v) > P (vi) for FP)}.

If Vpc is schedulable by EDF (resp. FP) when considering a null preemption cost,
then V is schedulable when considering the cost of preemption.
Proof. The Lemma directly follows from the simple observation that the cost of
preemption can never exceed pci for sub-task vi.
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Lemma 3 is safe but pessimistic. We can further improve the analysis by

observing that a sub-task cannot preempt another sub-task belonging to the

same task graph (we remind the reader that we assume constrained deadline

tasks).

We will now further reduce the preemption cost estimation by considering

only EDF and Fixed Priority with Deadline Monotonic priority assignment (DM).

Let us start by observing that, in the case of EDF and DM scheduling, a job of a

sub-task vi can preempt a job of sub-task vj at most once, and only if its relative
deadline is shorter, i.e., D(vi) < D(vj).

Definition 5 (Maximal sequential subset). Amaximal sequential subset VM of
task τ is a maximal subset of Vτ such that:
1. VM is weakly-connected;
2. ∀v ∈ VM , v′ ∈ pred(v) is either null and does not belong to VM , or non null
and belongs to VM .

We denote by cand(VM ) the set of all sub-tasks in VM that are either sources, or have
a null predecessor. Further, we denote by vM the sub-task with the shortest local
deadline in cand(VM).
Example 2. Consider task τ in Figure 5. Assume all subtasks have been allocated
on a given engine, except for subtask v4.

v1

v2

v3

v4 =∅ v5 v6

Figure 5: Maximal sequential subset example

According to this allocation, the task has two maximal sequential subsets: the
first is composed of v1, v2 and v3 whereas the second is composed of v5, v6
We observe that, since all the sub-tasks in VM are allocated onto the same

engine and since they do not have any predecessor sub-task allocated on a

different engine (no empty predecessor), they can be activated as soon as the

predecessor sub-tasks have finished.

Now, suppose v1, v2 ∈ VM and that v1 is an immediate predecessor of v2. If v1
preempts a sub-task vj , and D(v2) ≤ D(vj), then vj can be executed only after
v2 has finished. This means that the cost of preempting vj can be accounted
to only v1. We assign this preemption cost to the sub-task v

M
with the shorter

local deadline among all sub-tasks not having a predecessor in VM , whereas
the others do not pay any preemption cost. The preemption cost of any other

sub-task in V ′ is set equal to 0. For all sub-tasks that have a null predecessor, we
compute a preemption cost as in Lemma 3.
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Theorem 2 (Limited preemption cost). Let V = {v1, v2, · · · , vK} be a set of sub-
tasks scheduled by EDF/DM on a single processor. Consider Vpc = {v′1, v′2, · · · , v′K}
where v′i has the same parameters as vi, except for the WCET that is computed as
C(v′i) = C(vi) + pci, and pci is computed as Equations (6) or (7).
• If vi = vM , then

pci = max{pc(v)|v ∈ V \ Vτ ∧D(v) > D(vi)}; (6)

where Vτ is the set of sub-tasks of task τ where vi belongs.
• otherwise,

pci = 0 (7)

If Vpc is schedulable by EDF/DM when considering a null preemption cost, then V
is schedulable when considering the cost of preemption.
Proof. For space constraints, we report here a proof sketch.
Consider any sub-task vi ∈ VM not belonging to cand(VM): it is activated as

soon as the preceding sub-tasks have finished executing their corresponding

instances. Then, if one of the preceding tasks of vi preempted a sub-task vj , the
preemption cost has already been accounted in the worst-case execution time

of the preceding task; as discussed above, vj can only resume execution after vi
has completed. Thus, no further preemption cost need to be accounted.

If instead none of the preceding sub-tasks of vi has preempted vj , then vj
cannot start executing before vi completes, because its deadline is not smaller
than D(vi), hence no preemption will occur.

In any case, no cost of preemption needs to be accounted for to vi.
Similarly, sub-tasks belonging to cand(VM) and different from vM are not

subject to preemptions.

If EDF/DM are selected as engine scheduling policies, the preemption cost

is computed using Theorem 2. For other scheduling policies the estimation of

Lemma 3 can be used.

5 Allocation
5.1 Allocation of task specifications
The goal of our methodology is to allocate a set of task specifications into a set of

engines, by selecting alternative implementations, so that all tasks are completed

before their deadlines. From an operational point of view, this is equivalent

to finding a feasible solution to a complex Integer Linear Programming (ILP)

problem. However, given the large number of combinations (due to alternative

nodes, condition-control nodes, and allocation decisions), an ILP formulation of

this problem fails to produce feasible solutions in an acceptable time. In [36],

authors tried to formulate a similar relaxed allocation problem using ILPs. They

proved that finding an optimal solution can take several hours for very small
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size problems. Therefore, in this section we propose a set of greedy heuristics

to quickly explore the space of solutions.

Algorithm 1 describes the basic approach. The algorithm can be customised

with four parameters: order is the sorting order of the concrete task sets (see
Sections 4.1 and 4.2); slack concerns the way the slack is distributed when
assigning intermediate deadlines and offsets (see Section 4.3); alloc can be best-
fit (BF) or worst-fit (WF); omit concerns the strategy to eliminate sub-tasks when
possible (see Section 5.3).

At each step, the algorithm tries to allocate one single task specification (the

for loop at line 5). For each task, it first generates all concrete tasks (line 6), and
sorts them according to one relationship order (� or �). For each concrete
task, it first assigns the intermediate deadlines and offsets according to the

methodology described in Section 4.3 (line 8), using one between the fair or the

proportional slack distributions. It then separates the concrete tasks into tagged

tasks according to the corresponding tags (line 9).

The algorithm tries to allocate every tagged task onto single engines having

the corresponding tag (line 13) (this procedure is described below in Algorithm

2). If a feasible allocation is found, the allocation is generated, and the algorithm

goes to the next specification task (line 14). If no feasible sequential allocation

can be found, the next concrete task is tested.

The algorithm gives priority to single-engine allocations because they reduce

preemption cost, as discussed in Section 4.6. In particular, by allocating an entire

tagged task onto a single engine, we reduce the number of null sub-task to

the minimum necessary, and so we can assign the cost of preemption to fewer

sub-tasks.

If none of the concrete tasks of a specification task can be allocated (line

17), this means that one of the tagged tasks could not be allocated on a single

engine. Therefore, the algorithms tries to break some of the tagged tasks of a

concrete task into parallel tasks to be executed on different engines of the same

type. This is done by procedure parallelize, which will be described in Section 5.3.

In particular, one part of the concrete task will be allocated, while the second

part will be put back in the list of not-yet-allocated task graphs (line 24). If this

process is also unable to find a feasible concrete task, the analysis fails (line 29).

5.2 Sequential allocation
Algorithm 2 tries to allocate a concrete task on a minimal number of engines.

It takes as input a set of tagged tasks. For each tagged task, it selects the

corresponding engines, and sorts them according to parameter alloc (Best-Fit or
Worst-Fit utilization order). Then, it tests the feasibility of allocating the tagged

task on each engine in turn. If the allocation is successful, the next tagged task is

tested, otherwise the algorithm tries the next engine. If the tagged task cannot

be allocated on any engine, the algorithm fails. If all tagged tasks have been

allocated, the corresponding allocation is returned.
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Algorithm 1 Allocation algorithm
1: input : T : set of task specifications
2: parameters : order (� or�), slack (fair or proportional),
3: alloc (BF or WF), omit (parallel or random)
4: output : SUCCESS or FAIL
5: for τ ∈ T do
6: Ω = generate_and_sort_concrete_task(τ, order)
7: for (τ ∈ Ω) do
8: assign_deadlines_offsets(τ, slack)
9: S(τ) = filter_tagged_task(τ)
10: end for
11: allocated = false
12: for (τ ∈ Ω) do
13: if (feasible_sequential(S(τ), alloc)) then
14: assign task to engines; allocated = true; break;
15: end if
16: end for
17: if (not allocated) then
18: for (τ ∈ Ω) do
19: (τ′, τ′′) = parallelize(τ, alloc, omit)
20: if (τ′ 6= ∅) then
21: allocate τ′ to selected engines
22: add back τ′′ to T
23: allocated = true; break
24: end if
25: end for
26: if (not allocated) then return FAIL
27: end if
28: end for
29: return SUCCESS
5.3 Parallel allocation
When the sequential allocation fails for a given task specification, Algorithm 1

tries to allocate one or more of its tagged tasks onto multiple engines having

the same tag by invoking parallelize (Algorithm 3). The latter takes as input a
concrete task and two parameters, alloc for BF or WF heuristics, and omit to
select which sub-task to remove first.

For each tagged task of the concrete task , parallelize algorithm (Line 5) selects
the list of engines corresponding to the selected tag, and sorts them according

to BF or WF (Line 7). Then, it tries to test the feasibility of the tagged task on

each engine (line 9). If the test fails, it removes one sub-task from the tagged

task and adds it to the list of non allocated sub-tasks τ ′′ (line 11). We propose
two heuristics:

1. Random heuristic: it selects a random sub-task and adds it to the omitted
list.
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Algorithm 2 feasible_sequential
1: input: S(τ): set of tagged tasks, alloc
2: output: feasibility: SUCCESS or FAIL
3: for (τ(tag) ∈ S(τ)) do
4: engine_list=select_engine(tag)
5: sort_engines(engine_list, alloc)
6: f = false
7: nfeas = 0

8: for (e ∈ engine_list) do
9: f = dbf_test(τ ∪ Te) . Te=subtasks of engine e
10: if (f ) then
11: save_allocation(τ, e)
12: nfeas ++

13: break
14: end if
15: end for
16: if (not f ) then return FAIL;
17: end for
18: if (nfeas = |S(τ)|) then
19: return SUCCESS, saved_allocations
20: end if
2. Parallel heuristic: to be feasible, the critical path of each tagged task must
be feasible on an unlimited number of engines. Thus, we start by removing

sub-tasks that do not belong to the critical path as they may be the ones

causing the non-feasibility (here we assume that sequential allocation has

failed). Once a vertex is omitted, the next omitted vertexes will be its

predecessors or successors, so to maximize the size of maximal sequential

subsets.

The feasibility test is repeated (Line 10, Algorithm 3) until a feasible subset of

τ(tag) is found. The omitted tasks are tried on the next engine with the same
tag (line 16, Algorithm 3). At the end of the procedure, two concrete tasks are

produced: τ ′ is the feasible part that will be allocated, while τ ′′ will be tried again
in the following iteration of Algorithm 1.

6 Related work
Many tasking models have been proposed in the real-time literature to properly

capture timing requirements and concurrent execution flows. The multiframe

model has been proposed in [25] representing each task as a sequence of sub-

tasks (called frames), each with its own deadline. In [4], such a model has been

generalized using directed acyclic graphs to express conditional dependencies

within a task. A further extension has been presented in [30] with the digraph

model, using state machines to represent cycles within a task. While all above
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Algorithm 3 parallelize
1: input: τ: concrete task, alloc (BF or WF),
2: omit (parallel or random)
3: output: concrete tasks (τ ′, τ ′′)
4: τ ′ = ∅, τ ′′ = ∅
5: for (τ(tag) ∈ S(τ)) do
6: engine_list=select_engines(tag)

7: sort(engine_list, alloc)
8: for (e ∈ engine_list) do
9: f=dbf_test(τ(tag) ∪ Te) . Te=subtasks of engine e
10: while (not f ) do
11: τ ′′ = τ ′′∪ remove(τ(tag), omit)
12: f=dbf_test(τ(tag) ∪ TE)
13: end while
14: if (τ(tag) 6= ∅ ) then
15: τ ′ = τ ′∪ save_allocation(τ(tag), e)
16: τ(tag) = τ ′′, τ ′′ = ∅
17: allocated = true
18: break
19: end if
20: end for
21: if (not allocated) return ∅, τ
22: end for
23: return τ ′, τ ′′

models are restricted to sequential tasks, DAG-based models have been pro-

posed to allow expressing parallelism within a task. A response time analysis for

partitioned fixed-priority DAGs is presented in [16]. A similar model is adopted

in [22], proposing speedup and capacity augmentation bounds for global EDF,

RM and a federated scheduling approach. In [24], conditional nodes have been

introduced to parallel DAG tasks for modeling conditional branches, providing a

response-time analysis under global scheduling.

Many other works proposed real-time task models based on DAGs [16,22–

24,27–29,35,36]. However, to the best of our knowledge, none of them allows

modeling alternative implementations of the same functionality on heteroge-

neous computing engines. The closest model to the one we propose in this work

can be found in [34], where alternative implementations are modeled within

parallel digraphs. We extend the model in [34] by allowing both alternative and

conditional execution blocks. The Syndex project [15], [21] proposes a method-

ology, called AAA, to execute real-time tasks onto heterogeneous architectures.

However, it does not address alternative implementations as those captured by

our novel HPC-DAG model.

In [23], the deadline assignment problem is addressed for distributed real-

time systems. Two algorithms are proposed: Fair Laxity Distribution (FLD) and

Unfair Laxity Distribution (ULD). In [33], a general framework is presented for

partitioning real-time tasks onto multiple cores using resource reservation. A
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Figure 6: Schedulability and utilization results

technique is proposed to set task activation times and deadlines, using an ILP

formulation to solve the allocation and assignment problems. However, these

approachesmay be very time consuming when applied to applications consisting

of tens or hundreds of sub-tasks.

Regarding scheduling algorithms to be adopted within the heterogeneous

engines of modern embedded platforms, a key factor to consider is the cost

of preemptions, which may be non negligible, especially for GPU engines. Ini-

tial work on preemptive GPU scheduling assumed that preemption was viable

at the kernel granularity [38]. Preemption for GPU CUDA Kernels in NVIDIA

architectures are nowadays natively supported, both via hardware and soft-

ware mechanisms [8–10, 12, 17, 31]. More recently, other device vendors and

programming models started to natively support preemption at software (e.g.

Khronos’ OpenCL [13]) and architectural level, e.g., AMD devices [1] and Intel

iGPUs [19]. Depending on the computing architecture and on the nature of the

workload, GPU tasks present different degrees of preemption granularity and

related preemption costs.

7 Experimental results and discussions
In this section, we evaluate the performance of our scheduling analysis and

allocation strategies.

In the first set of experiments (Section 7.2), we evaluate the algorithms on a

large number of synthetically generated tasksets, using well-known tools in the

real-time systems literature, as detailed in the following section. We compare our

novel approach against the CP-DAG model proposed by Melani et al. in [24], in

which a global scheduling approach is adopted; in contrast, our analysis is based

on partitioned scheduling. For the sake of fairness related to this comparison,

we extend the CP-DAG model to support multiple engines. We applied the same

allocation heuristics of Section 5 and the same scheduling analysis of Section 4 to

both our proposed HPC-DAGs and the CP-DAG. For this first set of experiments,
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we consider an hardware platform consisting of 1 dGPU, 1 iGPU + 8 CPUs + 1

PVA + 1 DLA. This corresponds to using half the resources of a NVIDIA Pegasus

board. In fact, in the engineering practice it is common to reserve half of the

engines for real-time applications and the rest for best-effort applications.

To further demonstrate the effectiveness of our approach, in Section 7.4

we implemented, executed and analysed realistic computer vision applications

using our novel scheduling and allocation mechanisms. For this second set of

experiments, we consider a NVIDIA Jetson AGX platform consisting of 8 CPU + 1

iGPU + 1 DLA + 1 PVA.

7.1 Task set generation
The task set generation process takes as input an engine/tag utilization for each

tag on the platform. First, we start by generating the utilization of the n tasks
by using the UUniFast-Discard [14] algorithm for each input utilization. Graph
sub-tasks can be executed in parallel, thus task utilization can be greater than

1. The sum of every per-tag utilization is a fixed number upper bounded by the

number of engines per tag.

The number of nodes of every task is chosen randomly between 10 and 30.

We define a probability p that expresses the chance to have an edge between
two nodes, and we generate the edges according to this probability. We ensure

that the graph depth is bounded by an integer d proportional to the number
of sub-tasks in the task. We also ensure that the graph is weakly connected (i.e.
the corresponding undirected graph is connected); if necessary, we add edges

between non-connected portions of the graph. Given a sub-task node, one of its

successors is either an alternative node or a conditional node with a probability

of 0.7.
To avoid untractable hyper-periods, the period of every task is generated

randomly according to values taken from a range in [120, 120000]. For every
sub-task, we randomly select a tag. Further, for each tag, we use the UUniFAST-

Discard algorithm again to generate individual sub-task utilizations. Thus, the

sub-tasks’ utilization can never exceed 1. Further, we multiply the utilization

of each sub-task by the task period to generate the vertex execution time. A

CP-DAG is generated from a HPC-DAG by selecting one of the possible concrete

tasks at random.

7.2 Simulation results and discussions
We varied the baseline utilization from 0 to the number of engines per engine
tag in 16 steps. Therefore, the step size vary from one engine tag to the other:
the step size is 0.5 for CPUs, and 0.0625 for the others. For each utilization, we
generated a random number of tasks between 20 and 25.

The results are presented as follows. Each algorithm is described using 3
letters: (i) the first is either B for best fit orW for worst first allocation techniques;
(ii) the second is either O for the � order relation, or R for the� order relation;
(iii) the third describes the deadline assignment heuristic, F for fair and P for
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proportional. The algorithm name may also contain either option P for the
parallel allocation heuristic that eliminates parallel nodes first, or R for the
random heuristic which randomly selects the sub-task to remove. Average

values for 85 simulations per utilization step are presented.
Figure 6a represents the schedulability rate of each combination of heuristics

cited above as a function of the total utilization. The fair deadline assignment

technique presents better schedulability rates compared to proportional dead-

line assignment. In general, BF heuristic combinations outperform WF-based

heuristics: this can be explained by observing that BF tries to pack the largest

possible number of sub-tasks into the minimum number of engines, hence

providing for more flexibility to schedule heavy tasks on other engines.
In the figures, the CP-DAG model proposed in [24] is shown in yellow. Since

the CP-DAG has no alternative implementations, the algorithm has less flexibility

in allocating the sub-tasks. Therefore by construction the results for HPC-DAG
dominate the corresponding results for CP-DAG. However, it is interesting to

measure the difference between the two models: for example, in Figure 6a the

difference in the schedulability rate between the two models is between 10%

and 20% for utilization rates between 6% and 14%.

When the system load is low, all combinations of heuristics are able to achieve

high schedulability rates. BRF outperforms the others because it aims at relaxing

the utilization of scarce engines, thus avoiding the unfeasibility of certain task

sets due to high load on the scarce engines (i.e. DLA, PVA and GPUs). However,

when dealing with highly loaded task sets, BOF presents better schedulability

rates, as it reduces the execution overheads on all engines. Such overhead

reduction occurs because BOF selects the first schedulable concrete task having

the lowest volume.

Figure 6b reports the average number of active cores (CPUs) as a function

of the total utilization. WF-based heuristics always use all the available cores,

as we generate at least 15 CPU subtasks, i.e., the number of tasks is larger than
the number of CPUs. BF heuristics aim at packing the maximum number of

sub-tasks within the minimum number of engines, thus the utilization increases

quasi-linearly. This occurs until the maximum schedulability limit is reached.

BRF heuristic uses more CPU cores because it preserves the scarce resources,
thus it uses more CPU engines. As BOF privileges the overall load reduction, it

also manages to reduce the load on the CPUs compared to BRF.

Figure 6c shows the average active utilization for CPUs. As expected, average

utilization of BF-based heuristics is higher compared to WF. Again, BRF has

higher utilization than BOF because it schedules more workload on CPU cores

than the other heuristics. As the workload is equally distributed on different

CPUs, the WF heuristics may be used to reduce the CPUs operating frequency to

save dynamic energy. Regarding BF heuristics, we see that BRF is not on the top

of the average load because it uses more cores than the others.

7.3 Preemption cost simulation
In all previous experiments, we applied the analysis described in Section 4.6

to account for preemption costs. In particular, we applied the technique of
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Figure 7: Preemption cost Lemma 3 against Theorem 2

Theorem 2, by assuming that the cost of preempting a sub-task is 30% of the

sub-task execution time on a GPU, 10% on DLA and PVA, and 0.02% on the CPUs.

These are representative numbers experimented in real settings. Even if DLA

and PVA are non-preemptable engines, longer jobs might be split into smaller

chunks. More specifically, on a DLA, a neural network inference kernel can be

split on a per-layer basis. Similarly, on the PVA, a vision processing algorithms

might be applied to smaller images obtained as portions of the original full-

size input images. In such cases, we factor in the preemption overhead the

splitting cost due to the submission of multiple kernel calls instead of a single

batch of commands. To highlight the importance of a proper analysis for

preemption costs, we report in Figure 7 the schedulability rates obtained by BRF-

P in two cases: when considering the analysis of Lemma 3, where the maximum

preemption cost is charged to all preempting sub-tasks, and that of Theorem 2,

where the cost is only charged to one of the sub-tasks in the maximal sequential

subset. As the utilization increases, the schedulability drastically falls for the

first method, while the analysis of Theorem 2 provides for tighter schedulability

rates.

7.4 Real World application on the NVIDIA Jetson AGX Plat-form
In this section, we present results of the actual execution of a set of computer

vision tasks on a NVIDIA Jetson AGX board.

7.4.1 Hardware and software platform
The first set of experiments considers the NVIDIA Pegasus, an automotive-

grade platform featuring an 8-core CPU and four different kinds of accelerators:

integrated GPUs, discrete GPUs, a cluster of DLA accelerators and a cluster of

PVA accelerators. This second set of experiments considers the less expensive
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Jetson AGX Xavier platform
3
, featuring a similar set of engines, excluding the

discrete GPU. Each processing engine is treated as a single computing resource,

i.e., allowing the execution of only one sub-task at a time.

We have profiled different implementations of different processing algo-

rithms from the NVIDIA Vision Programming Interface (VPI)
4
. The NVIDIA VPI is

a software library that provides Computer Vision/Image Processing algorithms

implemented on the different engines available on the Jetson AGX board: 8-Core

ARM-v8.2 compliant CPU, the Programmable Vision Accelerator (PVA) and the

CUDA enabled integrated GPU. Memory allocation operations are managed

before executing the real-time processing. We provide a brief description of the

different tasks available on the NVIDIA VPI that we use in our tests, denoting as

X the input buffers (i.e. L or R, as in left and right image) and as Y the engine tag

where a sub-task is meant to execute (i.e. C for CPU, G for GPU and P for PVA in

Figure 8).

• Disparity Estimator (DISX) uses a pair of images from a stereo camera to
infer the depth of a scene. The NVIDIA VPI library provides implementation

for the CPU, the GPU and the PVA.

• Box Image Filter (BFXY) is a low-pass filter that smoothens the input image
by averaging surrounding pixels, removing details, noise and edges. The

NVIDIA VPI library provides implementation for the CPU, the GPU and the

PVA.

• Bilateral Image Filter (BLY) is a non-linear, edge-preserving smoothing filter
that is commonly used in Computer Vision as a simple noise-reduction

stage in a pipeline. It can run on CPU or in the GPU.

• Image Resampler (DSXY) is used to re-scale the input image, resampling its

content to make it compliant to a given output size. It can run on CPU or

in the GPU.

• Harris Keypoint Detector (HKY) implements a detection operator that is
commonly used to detect keypoints and infer features of an image. This

detector can run on CPU or in the GPU.

Figure 8 describes an example of application that uses the above tasks. The

example is provided by NVIDIA VPI documentation as a reference to a typical

vision processing pipeline applied for scene analysis obtained through cameras.

The task in Figure 8 has two outputs, the Harris keypoints and the disparity esti-

mation: it processes two images in parallel (left and right) to compute disparity,

and only the right image to compute the Harris keypoints. The task starts by

reading input images via sub-task INIT. To compute disparity, images are pre-

processed using Box Filters applied to both the right and the left images (BFXY).

We highlight that this pre-processing can rely on three different implementations

within the NVIDIA VPI library (CPU, GPU and PVA). In parallel, the Bilateral filter is

3https://elinux.org/Jetson_AGX_Xavier
4https://docs.nvidia.com/vpi/index.html
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applied before starting the Harris Key Point detection. As the stereo disparity

requires the two input images to be of the same size, input images are then

rescaled to the desired resolution by invoking the DSXY processing node before

invoking the DISX filter. In a similar way, HKY is released once the BLY terminates.

The task graph is very complex, as it generates 432 alternative implementa-

tions (concrete tasks), making it impossible to adopt brute-force analysis of all

alternatives.

INIT

ALT1 ALT2 ALT3

BLG

CALT1

BLC

ALT4

HKG

CALT4

HKC

SI2

BFLP

CALT2

BFLG BFLC

ALT5

DSLG

CALT5

DSLC

ALT7

BFRP

CALT3

BFRG BFRC

ALT6

DSRG

CALT6

DSRC

DISP

CALT7

DISG DISC

SI1

Figure 8: Example of computer vision pipeline of NVIDIA VPI

In Figure 9, we report average execution times as well as confidence intervals

as measured from 200 executions of every sub-tasks in the pipeline of Figure

8 on the engines available on the selected platform. We observe that GPU

and PVA implementations are usually much faster than CPU counterparts. For

example, image disparity runs 50 times faster on the PVA than on the CPU.

However, only few functions, such as box filters and disparity estimators, are

available on the PVA, leaving the GPU the only alternative to the CPU for more

general parallelizable tasks. We would like to point out that the NVIDIA VPI library

handles memory copies and translations transparently to the programmer. Thus,

memory transfers and address translation costs are included in the execution

times reported in Figure 9, instead of considering them as separate nodes within

the task-graph.

7.4.2 Experimental results
We used the functions described in the previous section to generate a set of

randomised experiments. For each experiment, we consider 5 task graphs. Each
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Figure 9: Execution times of different tasks (for readability, the Y axis has a

variable scale).

task graph is obtained from the task graph depicted in Figure 8 by adding/removing

a random vertex (and the corresponding edges). For each task graph, we con-

sider analysis subtasks WCET from the measures of Figure 9, by adding average

execution time to the confidence interval values. Then we generate a random

utilisation, and a period using the same techniques described in Section 7.1. We

assume that the task deadlines are equal to their assigned periods. Task graphs

are allocated on the considered platform (8 CPUs + 1 iGPU + 1 PVA + 1 DLA)

using the algorithms of Section 5, however we allow all heuristics to continue

allocation even when schedulability fails (i.e. line 14 of Algorithm 1 is executed

unconditionally).

In order to compare against a baseline approach, we have additionally im-

plemented a naive heuristic, which always selects the concrete task allocations

that feature the shortest execution times, therefore privileging the PVA and GPU

implementations when available (i.e. line 6 of Algorithm 1 only generates one

concrete task). We adopt non-preemptive FP scheduling for both the GPU and

the PVA, using the PRUDA library [37], and partitioned preemptive FP scheduling

for the CPUs.

Finally, the code for the task graphs is automatically generated, compiled and

executed on the target platform. Each sub-task is implemented by a separate

thread, and thread synchronization is implemented using semaphores. Deadline

misses are detected and counted during execution. The results are reported in

Figure 10.

Assigning long periods and deadlines to the nodes causes the system as

a whole to easily sustain the required computational load for all the relevant

engines. In these cases (e.g. utilization below 2 in Figure 10), even the naive

scheduling and allocation policy has no deadline miss. When the load increases,

i.e. deadlines and period are assigned smaller values, the accelerators (PVA and
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Figure 10: Deadline misses rate for real-task execution on Jetson AGX board

GPU) cannot sustain the assigned load, leading to deadline misses when the

naive approach is adopted. Instead, our proposed heuristics are able to alleviate

the load on the accelerators by assigning tasks to the CPU core as well, hence

reducing the resulting deadline misses.

It is not trivial to select which task to run on the CPUs, as the difference

between the accelerators execution time and the CPU execution time might be

dramatic. Our heuristics are able to detect when such differences would still en-

able a feasible taskset. More specifically, during these experiments we observed

that the CPU is selected for the box filter and the downscaling, which have a

limited performance deterioration when executing on the CPUs, compared to

the Harris and disparity task.

From the discussion in Section 7.2, the fair deadline assignment heuristics

result in better schedulability rates than the proportional deadline assignment

heuristics, and this is confirmed in this set of experiments. When the sequential

execution fails, the parallelize heuristics select the subtasks to parallelize accord-

ing to (i) random and (ii) parallel approaches. The parallel approach has less

deadline misses because it enforces subtasks in the same path to be allocated

together, thus reducing the need for expensive copy operations.

8 Conclusions and future work
In this Deliverable, we presented the HPC-DAG real-time task model, which

allows specifying both off-line and on-line alternatives of a task instance, to

fully exploit the heterogeneity of complex embedded platforms. We also pre-

sented a schedulability analysis and a set of heuristics to allocate HPC-DAGs on

heterogeneous computing platforms.

Our proposed model and related analysis are able to capture the complex-
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ity of the underlying hardware architecture and can be exploited to provide a

formal and tightly-bound schedulability assessment even when the available

accelerators have scheduling limitations, e.g., when they differ in the provided

preemption support. In case of preemptive scheduling, our analysis takes into

account the often non-negligible cost of preemption, by providing a significantly

less pessimistic analysis. We provided an exhaustive evaluation of different

heuristics to tackle the complex allocation problem on heterogenous embed-

ded platforms, profiling the schedulability ratio for workloads of different sizes.

The heuristics derived from our novel model are able to outperform naive ap-

proaches without being computationally intractable as brute-force approaches.

While this work only considered NVIDIA-based platforms (due to our choice of

platform in the project), our model and related analysis and allocation mecha-

nisms can be easily ported to similar heterogenous platforms.

As future work, we are considering extending our framework to account for

memory interference among different compute engines. This is a crucial aspect

when measuring the worst-case execution time of latency-sensitive applications

executing on heterogeneous engines sharing a common memory interface. Ig-

noring the effect of memory contention might significantly impact performance

and time predictability [2,11].
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