
 

D3.6 Validation of the CLASS edge computing 
subsystem 
Version 1.0 

 
Document Information 

Contract Number 780622 

Project Website https://class-project.eu/ 

Contractual Deadline M42, June 2021 

Dissemination Level PU 

Nature R 

Author(s) Roberto Cavicchioli (UNIMORE) 

Contributor(s)  

Reviewer(s) IBM 

Keywords Analytics, DNN, real-time 

 

 

 

 

 

 

Notices: The research leading to these results has received funding from 
the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No “780622”. 

 2021 CLASS Consortium Partners. All rights reserved. 



 
D3.6 Validation of the CLASS edge computing subsy stem 
Version 1.0    
  

2 

Change Log 
Version Author Description of Change 

0.1 
Roberto 
Cavicchioli 
(UNIMORE) 

Initial Draft  

0.2 
Erez Hadad  

(IBM) 
Internal reviewer 

1.0 UNIMORE, BSC Final version, ready to EC review 

 

 

  



 
D3.6 Validation of the CLASS edge computing subsy stem 
Version 1.0    
  

3 

Table of contents 
 

1 Executive Summary .............................................................................................4 

2 Code Updates .....................................................................................................4 

2.1 DNN and tracking .........................................................................................4 

2.2 Sensor fusion ...............................................................................................6 

2.3 Deduplication ..............................................................................................6 

3 Evaluation ..........................................................................................................6 

3.1 Evaluation Method .......................................................................................6 

3.2 Task schematization......................................................................................7 

3.2.1 class-edge as DAG..................................................................................7 

3.2.2 sensor fusion as a DAG ...........................................................................8 

3.2.3 Deduplication .......................................................................................9 

3.3 Evaluation Results ...................................................................................... 10 

3.3.1 Object detection and tracking ............................................................... 10 

3.3.2 Deduplication ..................................................................................... 12 

3.3.3 Sensor fusion ...................................................................................... 12 

4 References ....................................................................................................... 12 
 

  



 
D3.6 Validation of the CLASS edge computing subsy stem 
Version 1.0    
  

4 

1 Executive Summary 
This document describes deliverable D3.6 “Validation of the CLASS edge computing 
subsystem”, which focuses on validating the CLASS computing subsystem at the edge, as 
required by CLASS DoA [1]. The evaluation is based on what already presented in deliverables 
D3.1 [2], D3.3 [3], D3.5 [4], and other related CLASS documentation. The quantitative 
evaluation of CLASS analytics presented in this report is based on CLASS use-case workloads,  
with the full end-to-end evaluation of the CLASS use-case discussed in deliverable D1.6 [5]. 
Also, this document reports further optimizations and improvements that have been realized 
as part of the optimizations and additional impact. Together with the rest of MS4 documents, 
this document concludes the CLASS project as part of milestone MS4, executed in M31-M42. 

Unfortunately, since the pandemic affected the work of integration from MS3, this milestone 
has been subject to constraints that have slowed greatly the progress. We deliver all planned 
content under some mitigations, as following: 

• The real-time tool on the edge prototype is only applied statically and not 
dynamically. The original estimation of its integration effort was inadequate due to 
the pandemic situation. The eventual integration of the dynamic real-time tool is still 
planned for additional value, but may happen outside the project time-frame. 

The document lays out as follows. Section 2 details technical improvements and optimizations 
introduced in CLASS edge components as part of the ongoing integration. Section 3 consists 
of evaluation of CLASS computing subsystem at the end of the project, based on experimental 
evaluation.  

2 Code Updates  
The edge components of CLASS software stack have been improved from MS3, since the 
integration of them, thanks to the easy deployment given by the dockerization. We will now 
descript the different edge analytics components: DNN, tracker, sensor fusion and 
deduplication.  

2.1 DNN and tracking 

From cameras located in the streets, objects can be detected, classified, and tracked. 
All the cameras belonging to the infrastructure are supposed to perform those tasks 
in real-time and send the extrapolated information to a data aggregator. This aggregator will 
then de-duplicate repeated information and send messages to the connected cars, which will 
receive only objects that are relevant to their surroundings. 

Geo-localization: To perform the above operations, it is necessary to know the real world 
position of each object detected from the cameras. To do so, an extrinsic calibration of each 
camera in the MASA has been performed, in order to have a mapping for each pixel in the 
camera frame to its GPS position on a geo-referenced map. 

Real-time requirements: Data is constantly being produced and processed and it is 
extremely important to guarantee that the results are meaningful by the time they 
are computed. This is especially relevant for the Obstacle Detection and Tracking use 
case since alerts must raise within a time interval that is useful for the driver to react. 
A reasonable metric, considered in the scope of the CLASS project, is to get updated 
results at a rate between 10 and 100 milliseconds. Assuming that the maximum 
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speed of a vehicle within the city is 60 km/h, vehicles will advance between 0.17 and 1.7 
meters. This level of granularity is enough to implement the proposed use-cases.  

The flow of the application  

We have implemented all the tasks inside a single application called class-edge for 
independent testing before the integration phase and we have released the code open source. 
class-edge takes in input N_streams streams and for each of them perform four 
main steps: 

• First, frames are retrieved via the Real-Time Streaming Protocol (RTSP). Given 
that the image is taken from a camera, it is very likely that it is affected by 
distortion. To correct that, undistortion, based on the intrinsic calibration of 
the camera, is applied. Figure 1a shows an original frame while Figure 1b 
shows the output of undistortion. 

• Object detection is then performed on the undistorted image. For this project 
we picked the tkDNN (already introduced in D1.4 [6]) implementation of Yolov4 [7]. 
An example is given by Figure 1c. 

• The detection gives in output a list of bounding boxes (BBs). For each of them, 
a single point is picked to represent the whole object, namely the center of the 
bottom side of the BB. This pixel is converted first, into a GPS position, and 
then in meters. This is the format required from the next step: the tracker. 
Indeed, to track and predict the position of the detected objects an Extended 
Kalman Filter (EKF) [8] on the real-world position of the object has been applied. 
Objects between frames are matched together only if the class corresponds and their 
distance is under a user-defined threshold. Tracking is not only used to have a more 
robust detection, but also to have a history of the objects. The idea of history is given 
by the lines in Figure 5.4d. 

• Finally, the information can be sent both to the data aggregator, in an anonymized 
form, and to the optional graphical viewer.  

 
Figure 1 : Different steps for the class-edge application 
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2.2 Sensor fusion 

As already presented in D1.4 [6], the sensor fusion task is taken care by coupling different 
algorithms: the object detection network previously described, a clustering method for the 
LiDAR points and a similarity fusion one. With respect to the paper referred in D1.4 [9] the 
performance have improved thanks to the usage of Yolo v4 instead of v3. For an updated 
comparison of the performances between different versions of Yolo using tkDNN and 
TensorRT, please refer to: https://github.com/class-euproject/tkDNN. 

2.3 Deduplication 

As discussed in D1.4 [6], when multiple objects are detected in the same area by cameras that 
share part of their field of view or by a smart connected car moving in the same area, we have 
to manage the duplicated road users that are detected by the different actors. 

The simple method described, by searching for all nearest object with the same category of 
the considered one, was not scalable enough. The deduplication time for just 2 of all the 16 
cameras managed by the fog nodes and the smart/connected cars was 12 ms average and 42 
ms maximum, which can be considered reasonable, but with 4 cameras it increased to 34 ms 
average to 106 ms maximum, which is not suitable for our use cases. 

We opted for a solution using a knn library (libnabo [10]) that is based on k-d tree to reduce 
the computational cost. Whit this library the computational time to deduplicate all the 16 
cameras and the smart/connected cars was reduced to an average of 0.5 ms and a maximum 
of 5 ms. 

The updated code for the aggregator and de-duplicator can be found in the CLASS GitHub at 
https://github.com/class-euproject/deduplicator. 

 

3 Evaluation 
In this Section we review and evaluate the fit-for-purpose of the CLASS analytics layer. We 
present a quantitative performance evaluation focusing on both throughput and latency and 
discuss related observations that have been collected during evaluation. 

Following the general approach of this document, we focus on object detection and tracking, 
sensor fusion and deduplication. 

3.1 Evaluation Method 

Our evaluation method is designed to be closely aligned with the main CLASS collision 
avoidance use-case, as following. We use the CLASS deployment in Modena, with class-edge 
(detection and tracking) and the deduplicator deployed in the fog nodes in the Modena data 
center, while the sensor fusion is deployed on the smart cars. We use these applications as 
our benchmark applications. The datasets used for computation are also generated from 
actual Modena input videos recorded during integration sessions. 

Our 4 fog nodes in Modena have 32GB memory each and 6 cores (12 threads) of Intel Core i7 
8700K operating at 3.7GHz, equipped also with and NVIDIA TitanV GPGPU. The smart cars 
have a Drive Pegasus board, which contains 2 NVIDIA Xavier SoC and 2 modified RTX 2060 
GPGPUs. Specific tests for the development of the applications might have been done in 
different hardware (which is descripted if it is the case). 

 

https://github.com/class-euproject/tkDNN
https://github.com/class-euproject/deduplicator


 
D3.6 Validation of the CLASS edge computing subsy stem 
Version 1.0    
  

7 

We instrumented the class-edge and deduplicator applications with code that recorded time-
stamps of different stages, and used that information to generate detailed profiling  
information from each invocation. We also measured in a similar way the sensor fusion 
application. 

3.2 Task schematization 

In this section we are going to describe our tasks as Direct Acyclic Graphs (DAG) to fit the task 
model presented in D3.5 [4].  

3.2.1 class-edge as DAG 

Let us now pick N_streams = 2. The heterogeneous conditional DAG of the task is 
depicted in Figure 2, and its implicit deadline is D = 100ms. 

 
Figure 2 class-edge represented as a Heterogeneous Conditional DAG 

The process is actually composed of 5 threads: 2 threads, one for stream, that 
retrieve the stream ad store the image (str1|2); 2 threads that execute the flow of 
undistortion (und1|2), detection (pre1|2, inf1|2, pos1|2), tracking (tck1|2) and message 
sending (msg1|2); and an optional thread for visualization purposes (show).  
The reason behind this split is to control the end-to-end latency of the application. Having all 
the steps in sequential order would cause the missing of the 100 
ms deadline while having high data age and reaction time latencies. Indeed, the 
first bottleneck of this application is to retrieve and read the frame from the stream, 
especially because the minimum resolution of the considered stream in our infrastructure is 
HD (1920x1080).  

The second bottleneck is the complete undistort-detecttrack-send flow. Having these two 
operations in sequence leads to always working on old data, while separating them improves 
the performance of the system. To better understand the problem, some experimental results 
are reported.  



 
D3.6 Validation of the CLASS edge computing subsy stem 
Version 1.0    
  

8 

The experiments have been carried on an Intel i9-9900KF (@3.60GHz) coupled with an 
NVIDIA RTX 2080Ti. Two streams were considered: (i) stream [1] with an image 
resolution of 1920x1080 and rate of 25 FPS, (ii) stream [2] with image resolution 
3072x1728 and rate of 30 FPS. A better idea of the timing and the data exchange 
of the application is depicted in Figure 3. 

 
Figure 3 class-edge timing and data exchange details 

3.2.2 sensor fusion as a DAG 

This application can be seen as a sporadic DAG task with T = 100ms, and it is 
depicted as so in Figure 4. The DAG task is both heterogeneous, because multiprocessor CPU 
and GPU are used, and conditional, given that the visualization is optional. To better 
understand the flow: 

• the subtask LiDAR retrieves the point cloud from the sensor, that is then preprocessed 
by subtask preL and then offloaded onto the GPU to permorm the 
WBCL subtask. 

• there are four subtask (cam1 to cam4) that collect the frame from the four different 
cameras. Then the subtask preC pre-process them to obtain the format required by 
YOLO. The pre-processed frames are offloaded onto the GPU and 
the inference is computed. Finally the subtask postC applies the post-processing 
and project projects the 2D BBs into the cylindrical representation. 

• the subtask fusion fuses the output of the clustering and the detection, once the 
previous subtasks have completed. 

• the subtask show is in charge of the visualization and it is optional. 
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Figure 4 Sensor fusion represented as a Heterogeneous Conditional DAG 

This same application could also be modelled as a multi-rate task set, which is depicted in 
Figure 5. The periods of the sensors are given, T0 = 100ms for the LiDAR and T1 = 33ms for the 
cameras; while the period of the visualization is bounded to T5 = 33ms. The task clustering 
and detection inherit the period from the LiDAR and cameras respectively, but the fusion 
period needs to be T4 = 100ms in order to have the data from the LiDAR. 

 
Figure 5 Sensor fusion timing and data exchange details 

3.2.3 Deduplication 

The deduplication task consist only of one subtask, therefore no DAG equivalent is 
represented. 
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3.3 Evaluation Results 

3.3.1 Object detection and tracking 

Figure 6 reports the minimum, average and maximum latencies of subtask str1|2 over 5k 
frames, split in three further phases: (i)frame acquisition, form the RTSP stream, (ii) 
frameresize to a smaller resolution (i.e. 960x540) and frame copy to a shared buffer. From the 
chart, two main observations can be made.  

The first is that the most expensive part is the capture of the stream, which 
is affected by the original resolution and it’s higher for stream [2]. The second is 
that, even if in average str1|2 take between 15 and 20 milliseconds to execute, the 
same operation can take up to 160 milliseconds. Given these results, we decided to 
set 1920x1080 as an upper bound resolution for the RTSP stream, changing the setting directly 
on the cameras, so that the maximum execution is always less than 100 
milliseconds. 

 
Figure 6 Minimum, average and maximum latencies of subtask str 1|2, split in 3 further 

phases: frame acquisition, frame resize and frame copy. 

 
A similar chart for the undistort-detect-track-send flow is reported in Figure 7. 
Additionally to the already described phases, the copy of the frame from the shared 
buffer and the optional viewer feeding have been profiled. From this chart, we can 
evince that still there are some differences in the streams, not related to the resolution but 
on the scene itself instead. Stream [1] comes from a camera that points on 
a roundabout: it’s a dynamic scenario and even though there are many objects, the 
trackers don’t last long. On the other hand, stream [2] comes from a camera that 
points to a parking lot: it’s a static view, there are many objects and their trackers 
are always alive, keeping their information (with a limited history). For this reason, differences 
in terms of latency can be found in the tracking and viewer phases, 
which are proportional to the stored trajectories, while the other phases have similar 
duration. In any case, the total time of the flow is always less than 100 milliseconds. 
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Figure 7 Minimum, average and maximum latencies of undistort-detect-track-send flow. 

 

On a class fog node, we can see the results of the real time elaboration of 100 frames for 5 
cameras in Figure 8 as the output of our profiling.  

 
Figure 8 object detection and tracking results 
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3.3.2 Deduplication 

Figure 9 shows the computation time for the deduplicator task on fog node 4, which is the 
machine that aggregates all the MASA cameras and cars to create a complete snapshot. The 
times of more than 100 ms are due to a sleep that we introduced in the code to permit our 
status to be updated in a timely manner. The snapshot in the end is sent to both the Cloud, 
the smart cars and the municipality visualizer, therefore flooding it with data was creating 
overhead on the communication media. Therefore, we added the pause in order to obtain a 
predictable behaviour. However, in the final integration this pause is not needed because the 
deduplicator task is scheduled by COMPs as a periodic task that can be scheduled with a period 
of the desired length.  

 
Figure 9 Deduplicator results 

3.3.3 Sensor fusion 

Table 1 Execution times on the AGX Xavier, statistics computed over 5K frames. reports the 
results of the tested application on the AGX Xavier in terms of 
minimum, average and maximum execution time over 5k frames. 
 

 Clustering Detection Fusion 
min (ms)  
avg (ms)  
max (ms) 

1,98  
2,96  
7,44 

26,07  
28,86  
38,50 

0,18 
0,57 
1,20 

Table 1 Execution times on the AGX Xavier, statistics computed over 5K frames. 

4 References 
 

[1]  CLASS Consortium, “CLASS: Edge&CLoud Computation: A Highly Distributed Software 
Architecture for Big Data AnalyticS,” Baercelona, 2017. 

[2]  R. Cavicchioli, D3.1 Real-Time analysis of the edge computing platform, 2018.  

[3]  E. Hadad, “D3.3 Final release Edge Analytics Platform Agent,” CLASS, 2020. 

[4]  R. Cavicchioli, “D3.5 Final release of the realtime analysis methods,” CLASS, 2020. 

[5]  CLASS Consortium, “D1.6 CLASS Use Case Evaluation,” 2021. 

[6]  D. Amendola, “D1.4 - Final Release Of The Smart City Use Case,” CLASS, 2020. 

[7]  A. a. W. C.-Y. a. L. H.-Y. M. Bochkovskiy, “Yolov4: Optimal speed and accuracy of object 
detection,” arXiv preprint arXiv:2004.10934, 2020. 

[8]  R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.  



 
D3.6 Validation of the CLASS edge computing subsy stem 
Version 1.0    
  

13 

[9]  L. B. F. B. F. G. P. B. a. M. B. M. Verucchi, “Real-Time clustering and LiDAR-camera fusion 
on embedded platforms for self-driving cars,” in IEEE Robotic Computing proceedings, 
2020.  

[10]  J. a. M. S. a. S. R. a. N. A. Elseberg, “Comparison of nearest-neighbor-search strategies 
and implementations for efficient shape registration,” Journal of Software Engineering 
for Robotics (JOSER), vol. 3, no. 1, pp. 2--12, 2012.  

 

 

 


	1 Executive Summary
	2 Code Updates
	2.1 DNN and tracking
	2.2 Sensor fusion
	2.3 Deduplication

	3 Evaluation
	3.1 Evaluation Method
	3.2 Task schematization
	3.2.1 class-edge as DAG
	3.2.2 sensor fusion as a DAG
	3.2.3 Deduplication

	3.3 Evaluation Results
	3.3.1 Object detection and tracking
	3.3.2 Deduplication
	3.3.3 Sensor fusion


	4 References

