

D5.5 Evaluation of CLASS Big-Data Analytics
Layer

Version 1.0

Document Information
Contract Number 780622

Project Website https://class-project.eu/

Contractual Deadline M42, 30th June 2021

Dissemination Level PU

Nature R

Author(s) Erez Hadad (IBM)

Contributor(s) Pavel Kravchenko (IBM), Rut Palmero-Sanchez
(ATOS), Jorge Montero (ATOS)

Reviewer(s) Roberto Cavicchioli (UNIMORE)

Keywords Analytics, Serverless, Map, Reduce

Notices: The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No “780622”.

 2021 CLASS Consortium Partners. All rights reserved.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

2

Change Log

Version Author Description of Change

0.1 Erez Hadad (IBM) Initial Draft

0.2 Roberto Cavicchioli (UNIMORE) Review

0.3 Erez Hadad (IBM) Final draft for submission

1.0 BSC
Final version ready for EC
submission

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

3

Table of contents

1 Executive Summary ...4

2 Code Updates ...4

2.1 Lithops..4

2.1.1 A Practical Timing Goal ...5

2.1.2 Lithops Operation..5

2.1.3 Optimizing Lithops ...6

3 Evaluation ..7

3.1 Qualitative Evaluation ...8

3.1.1 Inclusive, Event-Driven Programming Model Featuring Multiple Analytics API 8

3.1.2 Predictable Computation ..9

3.1.3 Cloud and Edge Operation .. 10

3.1.4 Data Backend Connectivity ... 10

3.2 Quantitative Evaluation ... 11

3.2.1 Evaluation Method .. 11

3.2.2 Evaluation Results ... 12

4 Impact, Collaboration and Demonstrations ... 15

4.1 DataBench Support... 15

4.2 EXPRESS .. 18

4.3 Lithops.. 19

5 Product Glossary ... 20

5.1 Apache OpenWhisk... 20

5.2 Lithops.. 21

5.3 COMPSs .. 22

6 References ... 23

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

4

1 Executive Summary
This document describes deliverable D5.5 “Evaluation of CLASS big data analytics layer”, which
focuses on evaluating CLASS analytics, both qualitatively and quantitatively, as required by
CLASS DoA [1]. The qualitative evaluation is w.r.t. CLASS requirements and features presented
and refined in deliverables D5.1 [2], D5.3 [3], D5.4 [4], and other related CLASS
documentation. The quantitative evaluation of CLASS analytics presented in this report is
based on CLASS use-case workloads, with the full end-to-end evaluation of the CLASS use-case
discussed in deliverable D1.6 [5]. Also, this document reports further optimizations and
improvements that have been realized as part of the optimizations and additional impact.
Together with the rest of MS4 documents, this document concludes the CLASS project as part
of milestone MS4, executed in M31-M42.

Similar to MS3, this milestone has been subject to constraints that have slowed progress
behind expectations. We deliver all planned content under some mitigations, as following:

• The EXPRESS prototype is delivered stand-alone, not yet integrated into CLASS
applications – see D2.7 [6]. The original estimation of its effort was inadequate, and
much additional work was required. Much of this has since happened, but not enough
to allow integration. To accommodate and demonstrate value within CLASS project
time-frame, we ported several EXPRESS principles directly into Lithops [7] (formerly
PyWren), resulting in significant performance improvements and discussed below.
The eventual integration of EXPRESS is still planned for additional value, but may
happen outside the project time-frame.

The document lays out as follows. Section 2 details technical improvements and optimizations
introduced in CLASS components as part of the ongoing integration and evaluation. Section 3
consists of evaluation of CLASS analytics at the end of the project. First, qualitatively, in
contrast with CLASS requirements and design, and then quantitatively, based on experimental
evaluation. Next, Section 4 provides additional impact details. Last, Section 5 provides a
glossary of key technology products involved in CLASS, to assist in overall understanding of
the document.

2 Code Updates
The analytics layer of the CLASS software stack has been finalized at MS3, in accordance with
the project plan and as reported in D5.4 [4]. Since then, during integration and evaluation, the
WP5 work diverged into multiple work streams. One was (as expected) continuous
integration. Among the others were evaluations and refinements of analytics back-ends and
continued work on EXPRESS. For specific backends, such as COMPSs, DNN in the edge (YOLO)
and DNN in the cloud (SLA predictor), the specific evaluations are delegated to the respective
evaluation reports of WP2, WP3 and WP4. In this report we therefore report only further
changes made to Lithops and to EXPRESS.

2.1 Lithops

As can be seen in Figure 1 below, Lithops plays an important role in the main CLASS use-case
application of collision detection. In particular, it is responsible for executing the Trajectory
Prediction (TP) and Collision Detection (CD) application components. As such, Lithops has
been a focus of attention with several optimizations.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

5

Figure 1 : CLASS application for Collision Avoidance Use-Case

2.1.1 A Practical Timing Goal

As discussed in several earlier documents (e.g., D1.4 [8]), the CLASS collision avoidance
application aims to handle objects that are in the “Warning Area” of a moving car, i.e., objects
that are outside the immediate field of view of the mounted sensors or the driver’s senses.
Assuming that the warning area objects are at least 20-50 meters away from a car moving at
an urban speed limit of 50 Km/h, on a dry road and no slope (matching the Modena testing
conditions), we use a Stopping Distance Calculator such as [9] to derive that the response time
of the entire system should be 0.5-2.5 seconds. Based on that, we define the practical range
of computation time for CLASS prototypes for TP and CD to be no more than 0.5 seconds.

2.1.2 Lithops Operation

Figure 2 below demonstrates how Lithops operates. Lithops is a portable map/reduce engine
implemented as a Python library, that is designed for massively-parallel computation. It
provides two operations of map(f, ds) and reduce(f, ds) , of which map() is the more important
one, as it allows concurrent application of the given function f to all elements of the given
dataset ds, allowing efficient use of parallel infrastructure for a large amount of independent
computations. map() is used for TP and CD, as described in detail in D5.4 [4].

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

6

Figure 2: Lithops Map Operation

 map(f, ds) works in the original Lithops in the following way: As shown in Figure 2, a Lithops
computation begins with a client (using the Lithops library) that invokes the map() operation
executed by workers (that implement the concurrent computation). The process is as follows:

1. Lithops registers its worker at the target platform that is used to execute the
computation. For example, on a serverless platform (such as Apache OpenWhisk) it
registers the worker as a function, based either on an existing Docker image (e.g.,
from DockerHub) or using a customized Docker image.

2. The function f and dataset ds are each serialized and stored as a single object in object
storage, which is required for Lithops operation.

3. Lithops partitions the dataset ds into its elements and builds an invocation for each
element. The invocation data contains a reference to the serialized function and data
and a specific index range for the specific element’s data

4. All invocations are concurrently and asynchronously dispatched from the client,
causing workers to be instantiated and started at the target platform. The number of
concurrent workers is limited by the target platform, so there might be several rounds
of workers being started to cover all elements. In Figure 2, the example maximum
concurrency is 4.

5. The client proceeds to wait for result notifications by polling worker-specific objects
in object storage.

6. Each worker, once started, uses the invocation data to de-serialize the function f and
its designated data element e from object storage.

7. After de-serialization, each worker invokes f(e), writes the result to its designated
object in object storage, updates some finalization statistics and terminates.

8. At the client, Lithops collects results from all the workers’ respective objects and
returns them as the map() result.

2.1.3 Optimizing Lithops

Early benchmarks showed that the original version of Lithops exhibits high overhead of
initialization and finalization, often in the order of multiple seconds. A detailed analysis of the
code and execution revealed operation flow details that have been summarized in the
previous Section. Discussions about Lithops applicability in many other big-data use-cases in
IBM Research and in EU projects (e.g., CloudButton [10]) concluded that for general-purpose
batch computation, this kind of performance overhead is actually acceptable:

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

7

• The overhead time in many cases is dominated by net computation time when using
long-running map functions, e.g., in the order of minutes

• Data is often too large to be passed directly to workers, e.g., due to serverless
protocol limitations, so mediating data using a 3rd-party storage such as object
storage is required.

However, this is clearly not the case for CLASS applications such as the collision detection
application (i.e., TP or CD computations), where big data typically consists of a large number
of small elements, per-element computation is short (order of tens of milliseconds) and total
computation latency is of extreme importance.

With those differences established, we set out to optimize Lithops for CLASS. The first round
of optimizations for Lithops, which has already been reported in D5.4 [4], consisted mostly of
tuning and configuration without almost any code changes, and resulted in single object
computation (TP) still being above our goal of 0.5 seconds, even with the combined
improvements in DataClay, which is an integral part of the computation – in TP, the Lithops
code reads and writes to DataClay, and in CD, it reads from DataClay.

In the second round of optimizations, presented in this report, we focused on optimizing the
code of Lithops. We profiled the map() operation in detail and confirmed our anticipation that
a bulk of the overhead time was spent in the cumbersome interaction between the client and
the workers using object storage. Not only that, we identified that our on-premise deployment
of Lithops in Modena, which is using Minio [11] as a local object storage solution, suffers from
increased per-object access time when increasing access concurrency, thus significantly
damaging our Lithops solution value as a scalable timely computation. Thus, we decided to
make all necessary code changes to completely remove any dependency of Lithops on object
storage. The resulting code changes highlights have been as following:

1. Invocation data is now passed directly to workers using the serverless protocol (or
that of any other target platform)

2. Results from workers are notified back to the client using a fast message queue
(RabbitMQ [12]) instead of polling object storage

3. A new storage backend was added to Lithops: “storageless”, which is a dummy
implementation of the Lithops storage interface that throws an exception if asked to
perform a meaningful operation such as read or write. This helped us verify that
Lithops does not require storage operations anymore.

Additionally, we implemented chunking, which allows sending groups of elements (more than
one) in each worker invocation. This feature serves two purposes. First, it provides a way for
developers to calibrate their Lithops computation by controlling the resulting concurrency to
meet a latency requirement (above a certain minimum). Second, it allows to mitigate some
performance issues discovered during quantitative evaluation and discussed in Section 3.2.
This feature, along with direct communication and message-queue based notifications, are
also inspired by similar EXPRESS features. EXPRESS features efficient communication with its
workers – the runners, and reusing the runners for multiple executions for amortizing the cost
of worker startup and shutdown.

3 Evaluation
In this Section we review and evaluate the fit-for-purpose of the CLASS analytics layer. We
begin with a qualitative evaluation w.r.t. CLASS requirements and consequent design and
evolution as presented in D5.1 [2], D5.3 [3] and D5.4 [4]. In the second sub-section, we

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

8

present a quantitative performance evaluation focusing on latency and discuss several related
observations that have been collected during evaluation.

3.1 Qualitative Evaluation

To assess the final implementation of the CLASS analytics layer from a quality perspective, we
list the main features and discuss how they are addressed.

3.1.1 Inclusive, Event-Driven Programming Model Featuring Multiple Analytics API

As shown in Figure 3 below, the analytics layer of CLASS is based on a serverless platform,
using Apache OpenWhisk [13]. This allows CLASS developers to compose their applications
from serverless functions – pieces of business logic that can be written in different
programming languages and employ different libraries and analytics engines, yet be able to
invoke one another through the common serverless platform’s protocol, thereby forming the
complete application. This universal connectivity of the serverless protocol is clearly
demonstrated in the main CLASS use-case of collision avoidance application, where the
COMPSs workflow invokes the Lithops-based TP and CD logic, which are available as serverless
functions. Invocation can be either synchronous (i.e., wait until completion) or asynchronous
(invoke and continue).

Figure 3: CLASS Analytics Architecture

The same OpenWhisk protocol also allows to bind serverless functions to events, which are
similar to pub-sub channels. This allows functions to be invoked based on real-world events
converted to OpenWhisk events through OpenWhisk feeds. Functions can also distribute
notifications to other functions using events and cause independent activation of multiple
other logic components in response to these notifications.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

9

Another alternative model that is enabled by combining a data back-bone with events is an
“enrichment” model in which a function activation is triggered by a timer event, and the
function, when triggered, retrieves data from the data back-bone, performs its update and
writes the updated data back. An important advantage of the enrichment model is that it
allows different stages of the same workflow to operate at different frequencies according to
their capabilities, while guaranteeing eventual generation of results by having the data
propagated through the different stages using the back-bone.

The integration of EXPRESS on top of OpenWhisk does not lose any properties of the
underlying serverless platform. Functions running inside EXPRESS pools are still reachable
through the serverless protocol using EXPRESS wrappers, which are deployed as standard (but
tiny and efficient) OpenWhisk functions. Similarly, events trigger wrappers which relay the
data to EXPRESS functions asynchronously, thereby generating little additional overhead.
Also, EXPRESS functions can be written in different languages and use different engines by
using matching EXPRESS runners. Last, even the EXPRESS API itself is largely language-
independent since it is based on a message queue (RabbitMQ [12]) which has polyglot API and
on Protocol Buffers [14] which are polyglot as well. Thus, EXPRESS can be directly invoked
from practically all common programming languages.

Support for various analytics APIs is enabled in OpenWhisk (with or without EXPRESS) using
the standard process of building and deploying OpenWhisk functions as described I D5.1 [2].
Explicit support has been added for COMPSs workflows on OpenWhisk in D5.3 [3]. Lithops-
specific actions have also been built, and integrated into the demonstration use-case for
Trajectory Prediction and Collision Detection, as explained in detail in D5.4 [4].

3.1.2 Predictable Computation

One major CLASS goal is predictable computation – executing computation in bounded time
with high probability. Given that CLASS does not deal with factors below the middleware, such
as operating system scheduling and hardware control, it aims only for “soft” or “near” real-
time computation.

Enablement of predictable computation in CLASS analytics layer is focused on three aspects.
The first is tuning the relevant analytics infrastructure component to generate a bounded 1
overhead, as shown in the quantitative analysis below. The second aspect is allowing
scheduling to be customized in favor of real-time execution. The third aspect is giving
developers a way to calibrate their computation, by providing different options for executing
the same workload yielding different completion times.

The above aspects are apparent in many components of the final CLASS analytics layer,
starting with the core. For the underlying Apache OpenWhisk, CLASS leverages warm
containers where functions are first pre-loaded in memory using a “warm-up” round before
engaging in production computation, to make sure function startup overhead, which could be
quite significant, is outside the critical invocation path. Furthermore, DataClay session start,
which is a CLASS-specific overhead, is included in the function startup and skipped when using
warm start, as demonstrated by the TP and CD functions in the collision avoidance application.

Unfortunately, OpenWhisk has its own fixed scheduling algorithm, and calibration is mainly
handled by OpenWhisk configuration tweaking, which is a cumbersome process. Given the
declining business interest in pursuing OpenWhisk-specific optimizations, as reported in D5.4

1 Without complete control of the entire software stack, it is not reasonable to guarantee absolute
bounds on computation overhead. Therefore, we aim to show “bounded with high probability” as
discussed in the quantitative evaluation below.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

10

[4], we initiated EXPRESS around mid-project, which is a significant leap beyond OpenWhisk
limitations, and is completely independent of OpenWhisk itself.

EXPRESS, which we presented in detail in D5.4 [4], supports predictable execution at the
serverless level much more extensively than OpenWhisk. Recall that the method of operation
of EXPRESS is “nested computation” - it deploys its own custom runners (CRs) as serverless
functions and then executes functions inside the CRs according to its own custom scheduler.
By decoupling the serverless function life-cycle from the executed function’s life-cycle it allows
for a customary model which separates initialization and finalization from the critical
invocation path. EXPRESS support for custom scheduling allows explicit integration of a real-
time scheduling algorithm. Last, calibration in EXPRESS is enabled by dynamic control of the
size of its runner pools. This means the application developer gets to control both the static
limits of the concurrency – minimum and maximum number of concurrent execution slots in
the runner pool, as well as the policy by which the pool is dynamically resized in response to
event load. As explained in D5.4, each EXPRESS slot is used for repeatedly executing requests
(without initialization and finalization) directed to it from the EXPRESS controller through a
fast message queue-based protocol. As can be understood, this is what inspired the
“chunking” feature of Lithops. However, Lithops chunking is only a crude approximation, since
a chunk size is fixed, whereas EXPRESS control is fine-grained and dynamic, allowing features
such as load-balancing and deadline awareness.

Aside from the infrastructure components, predictable computation is also implemented in
analytics backends. COMPSs has a designated deadline-aware scheduler for workflows that is
separately discussed in D2.7 [6]. In Lithops, computation overhead was intensively optimized
and reduced, as discussed in Section 2.1.3 above and evaluated below. Also, calibration is now
available in Lithops via chunk size control, with the resulting maximum concurrency equals
the dataset size divided by chunk size. Custom scheduling is not required in Lithops since it
has a fixed simple fan-out workflow with all elements of equal priority.

3.1.3 Cloud and Edge Operation

CLASS aims to allow developers to deploy applications easily and efficiently anywhere across
the compute continuum – both on cloud and on edge nodes. For edge nodes / clusters, which
are separate and less reliably accessible than cloud, CLASS analytics features a federation
mechanism that allows eventually consistent propagation of software assets deployed at the
cloud to designated edge nodes, operating as programmable analytics agents of CLASS.
Federation has been implemented and reported in D3.2 [15] and in D3.3 [16]. Furthermore,
federation has been put to use in the CLASS use-case as a means to update the edge code for
detector/aggregator in CLASS nodes, proving its value as a simplified means of controlling
edge nodes at scale, and reported in D3.4.

3.1.4 Data Backend Connectivity

As originally discussed in D5.1 [2], universal computation across the compute continuum
requires both compute and data. For universal data access across the continuum, as described
in in D2.7 [6], CLASS relies on dataClay. Support for dataClay for analytics applications is
demonstrated both in COMPSs (reported separately in in D2.7 [6]) and in Lithops. For Lithops
applications, this has been implemented and reported starting in D5.3 [3]. Specifically, we
implemented a “data managers” layer that has both a dataClay back-end and a simple CSV file
back-end, to allow porting the original TP and CD logic, which was contributed by ATOS as a
sequential application that used CSV input, into a Lithops-based serverless function that uses
dataClay.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

11

3.2 Quantitative Evaluation

In this section we report and discuss empirical performance evaluation results conducted for
the CLASS analytics infrastructure and analytics backends. Following the general approach of
this document, we focus on OpenWhisk and on Lithops, as other components are being
separately evaluated and reported in respective MS4 documents.

3.2.1 Evaluation Method

Our evaluation method is designed to be closely aligned with the main CLASS collision
avoidance use-case, as following. We use the CLASS deployment in Modena, with OpenWhisk
deployed in a Kubernetes cluster in the Modena data center. We use the actual TP and CD
serverless functions that are used in the collision avoidance use-case as our benchmark
applications. The datasets used for computation are also generated from actual Modena input
videos recorded during integration sessions.

Our Kubernetes cluster in Modena consists of 1 master node and 4 workers nodes
(provisioned as virtual machines), all deployed with Kubernetes v1.19.3. 3 worker nodes have
8GB memory each and 4 cores of Intel Xeon Gold 5120 operating at 2.2GHz. 1 worker node
has 60GB of memory and 16 cores of the same mode. So, in total there are 28 cores.

We use official OpenWhisk version tag “ed3f76e” (released 11/20) pulled from Docker Hub.
We use a standard deployment scheme of one OpenWhisk invoker and one OpenWhisk
controller per node, one global nginx for load-balancing across controllers and one global
Kafka for controller-invoker communication. Note that available memory for OpenWhisk is
restricted to 7GB per node due to a recent feature that sets a uniform limit on memory per
invoker, so we use the common size of usable memory. The translates to a global limitation of
about 100 concurrent functions for the entire cluster.

We instrumented the TP and CD functions, both at the client and at the worker components,
with code that recorded time-stamps of different stages, and used that information to
generate detailed profiling information from each invocation.

Last, the benchmarks consisted of running TP and CD at different workload size and chunk size
and collecting profiling information. Recall that a chunk size controls how many concurrent
invocations are generated by Lithops and it is designated as the key factor in calibrating
Lithops performance (aside from the infrastructure size itself). TP (Trajectory Prediction) is a
unary operation performed at each object individually, so workload size for TP is essentially
the number for objects in the set. CD (Collision Detection) is a binary operation, taking two
objects as input, with at least one of which being a connected car. For isolated performance
evaluation and stress generation, all objects are labeled as connected cars. Thus, workload
size is determined by number of pairs - all 2-combinations (i.e., unordered unique pairs) of
objects from a given object set. Each workload is executed 10 times as warm containers (i.e.,
after a warm-up round) and profiling data is collected and analyzed, as discussed further
below.

To demonstrate the improvements introduced during project life-time and documented in
D5.4 and in Section 2.1.3, we compare two versions of Lithops. One is baseline, in which the
improvements are turned off (by configuration). The other is current, which employs all
improvements. The version of dataClay that is used with both current and baseline is the latest
that was available during the benchmarks. This makes the comparison more accurate and
focused only on Lithops and OpenWhisk, as opposed to previous performance enhancement
indications in D5.4 [4] that were based on comparing together OpenWhisk + Lithops + dataClay
using a few point values.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

12

3.2.2 Evaluation Results

Evaluation results are presented as following. We start with overall end-to-end computation
latency for TP and for CD, comparing baseline and current. We then discuss some insights and
observations arising from the collected data. Finally, we present and discuss OpenWhisk
invocation overhead and its significance in practical use of serverless infrastructure for
latency-sensitive computation.

3.2.2.1 Total End-To-End Latency

Figure 4 below presents the total end-to-end latency results for both baseline and current CD
functions. The measurements are taken for chunk size of 1, 3, 5 and 10 objects, for workload
sizes of 5, 10, 20 and 50 objects. Both graphs (baseline and current) are shown on the same X
and Y axis.

A few observations:

1. The current Lithops improves in total latency up to 7X over baseline, e.g., when
comparing the 20 objects workload latency

2. The current Lithops delivers CD of 50 objects (>1200 object pairs) in ~500 msec, which
is the upper practical limit, as described in Section 2.1.1. Baseline CD for 50 objects is
too slow for any practical reasons (tens of seconds) so it is not included.

3. A typical and expected graph shape of “smiling curve” is formed for all workload sizes.
This demonstrates two conflicting apparent behaviors:

a. Too-high chunk sizes imply reduced concurrency, where the existing
infrastructure is under-utilized and few Lithops workers have to process lots
of object pairs sequentially, yielding high total latency.

b. Too-low chunk sizes for large workloads yield a number of invocations that is
higher than the number of maximum concurrent workers allowed by
OpenWhisk, thus causing workers to be re-invoked with new sets of pairs but
with additional overhead of worker reset (finalize and restart). For small
workloads, too-small chunks cause straggler sensitivity – i.e., that workload is
thinly spread over many workers, and that late-starting workers (stragglers)
delay total completion time, yielding again increased total latency.

Figure 4: Average end-to-end latency of Collision Detection

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

13

4. Calibration is indeed valuable, as the shortest total latency for a given workload size
is attained at different chunk sizes – sometimes 1, sometimes 3, sometimes 5. A future
logic (e.g., DNN) can help in automatically determining the right configuration.

Figure 5 below presents total end-to-end latency for TP, baseline and current. In a TP
computation, processing is done per-object, as opposed to per-object-pair in CD. Because of
that, the same size of object set yields a much smaller workload, compared to the square-size
workload of CD. Thus, we benchmark TP with bigger object set sizes to examine its behavior
realistically compared to CD. As expected, the results exhibit behavior similar to CD with
similar observations. Note that the improvement demonstrated through project optimizations
in TP is as much as 3X, demonstrated for 50 object workload. Another minor observation that
is more apparent with TP is that small workloads with large chunk size yield similar latencies,
because all computation is handled essentially in a single Lithops worker (a trivial case).

Figure 5: Average end-to-end latency of Trajectory Prediction

3.2.2.2 OpenWhisk Overhead

In this Section we evaluate the invocation overhead imposed by OpenWhisk. Figure 6 below
presents the overhead measured for TP and CD invocations. As we are dealing with platform
overhead, we consider results collected from both baseline and current versions of both
applications.

Each of the 4 graphs in Figure 6 presents the 90th percentile of OpenWhisk invocation
overhead, for TP and CD, baseline and current. The calculation of per-invocation overhead is
done by subtracting the net execution time of the respective TP or CD application from the
total (gross) execution time, which was presented and discussed in the previous Section.

The most important observation from this data, which can be easily seen, is the critical
importance of warm start. Note that the difference between measurements is in order of 10s
of msec for all chunk sizes and workload types, except for a few outliers that stand out, e.g.,
CD baseline, chunk size 10 and workload of 20 objects. Analyzing the logs, we traced those
outliers to two cases of cold start:

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

14

• Lithops worker cold start – this can happen e.g., when increasing the number of
workers between two computations. The resulting delay can be in the order of 100s
of msec.

• Lithops client cold start – this can happen e.g., when changing workloads (TP to CD or
baseline to current and vice-versa). The resulting delay is very large (1000s of msec)
since it also involves re-connecting with dataClay.

In both cases, delaying too long after a warmup round (e.g., resetting dataClay with test
content) or improperly-tuned warmup, may cause the cold start to happen. This is because
warm-up in serverless platforms is an opportunistic feature. This clearly indicates one key
motivation of EXPRESS – guaranteed warm-container behavior with warm concurrency
completely at the control of the application developer. This is also the reason why various
market competitors developed their own custom-made solutions to address this exact issue,
such as AWS Lambda Provisioned Concurrency [17]. However, as already explained in D5.4
[4], EXPRESS will provide this capability on top of any serverless platform, and as an open-
source project. In that sense, this evaluation provides empirical evidence to the necessity of
EXPRESS.

Figure 6: 90th percentile of OpenWhisk Invocation Overhead

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

15

To further emphasize the practical value of serverless when overcoming warm start, we
present a second set of graphs in Figure 7, where we remove from the result dataset all the
cold-start results – whether client or worker cold-start. As can be seen now, we get a practical
solution for soft-real-time systems with 90th percentile of invocation overhead in all cases of
invocation overhead is less than 85 msec2. We expect that with EXPRESS, this threshold on the
same hardware resources may be significantly lower, because of a much-improved interaction
of event-to-client and between client and workers (in addition to guaranteed warm-up
behavior).

Figure 7: 90th percentile of OpenWhisk Invocation Overhead - Warm Only

4 Impact, Collaboration and Demonstrations
In this Section we describe additional impact gathered by CLASS analytics since MS3,
collaboration efforts with other EU projects and bundled demonstrations.

4.1 DataBench Support

The idea is to integrate a benchmark into the DataBench project [18] big data and AI catalogue
based on the trajectory prediction analytic developed and using the potential of OpenWhisk
[13] and owperf [19]. The DataBench catalogue lists many of the most used benchmarks

2 As explained before, CLASS operates at the middleware level and thus does not control the entire
software stack. As such, it cannot guarantee absolute bounds. Rather, it aims for practical solution for
soft- or near- real-time solutions.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

16

related to big data. The blog https://class-project.eu/news/benchmarking-real-time-
serverless-applications-owperf describes deeply how to benchmark serverless functions and
measure the response times. The collaboration with DataBench consisted in the automation
of the deployment and the execution of the CLASS benchmark within the DataBench Toolbox
[20].

Being listed in the DataBench entails the possibility of reaching out to a bigger audience, as
well as bringing to the end users of the benchmark an easier and more automated way to
deploy and run the benchmark. Figure 8 shows the DataBench Toolbox catalogue where the
CLASS benchmark is placed.

Figure 8. DataBench benchmark catalogue

Figure 9 shows the description of the CLASS benchmark in the DataBench Toolbox, where
users are able to set the configuration parameters to deploy and run the benchmark, specify
where to store the results, and configure the parameters of owperf about the number of
workers or number of iterations, among others.

https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf
https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

17

Figure 9. CLASS benchmark description

Figure 10 and Figure 11 represent the execution phase of the owperf tool in the DataBench
infrastructure, and the results related to the response times. The description of each metric is
well described in the previous blog entry https://class-project.eu/news/benchmarking-real-
time-serverless-applications-owperf

https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf
https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

18

Figure 10. CLASS benchmark execution

Figure 11. CLASS benchmark results

4.2 EXPRESS

EXPRESS is maturing and gaining attention, so far only inside IBM, because of a prolonged
patent disclosure process. However, it did accumulate additional impact:

• The patent disclosure has been filed by IBM at the USPTO, with application number
17/315422.

• At the time of writing this report, EXPRESS is included in future proposals of
CONGENIAL+ and MetOS for the future DATA-01-05 call in Cluster 4 of Horizon
Europe. In this call we aim to demonstrate EXPRESS in different Non-Functional
Requirements for serverless applications including predictability but also exploring
locality, heterogeneity and composability.

• With management agreement, EXPRESS is going to pilot integration with an existing
IBM Cloud offering. If the prototype convinces the IBM Cloud division, it might
become an official part of the offering.

• EXPRESS is planned to become an open-source project on its own.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

19

Now that the EXPRESS IP is filed, we expect to also start publishing about it in papers and
blogs.

4.3 Lithops

In CLASS, we have taken Lithops, a map/reduce on serverless engine designed for massive
parallelism, and transformed it from a high-overhead execution designated for long per-
element computation into another big-data use-case that consists of a large amount of short
computations and focuses on small overhead and low overall latency. All the changes
documented in D5.4 [4] and in Section 2.1.3 are planned to undergo a review in IBM and if
approved be contributed back to the Lithops open-source project [7]. Some of the changes
have already passed the process and got contributed, such as persisting the map function in
the container image.

We conclude the work on Lithops with a demonstration of the TP (Trajectory Prediction)
application invoked as a Lithops-based OpenWhisk function, with the new chunk size feature
enabled and specified. The demonstration video is available at the CLASS intranet:

https://class-project.eu/user/login

A dedicated user has been created for demonstration purposes, with limited access to
deliverables and related videos. The credentials to access this service are the following:

Username: EC_user

Password: @Hz.52qXXF#K23

After logging in, click on “Intranet”, the demonstration videos and files of this deliverable are
located in “PU_D5-5Report” directory.

https://class-project.eu/user/login

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

20

5 Product Glossary
This auxiliary section provides a brief overview of the products involved in CLASS analytics, to
put the above discussion in context.

5.1 Apache OpenWhisk

Apache OpenWhisk [13] (OW for short) is a serverless, open source cloud platform, which was
initiated, and is still maintained, by IBM. OpenWhisk executes functions (called actions) in
response to events, at scale. Both actions and events are high-level abstractions that can be
implemented in various ways. Actions, as code, can be written in virtually any programming
language (although there are 7+ languages that have official support), and using many
platforms and SDKs. Similarly, events can represent any concrete event or signal, such as
message arrival, command invocation, device signals, or mark the occurrence of a higher logic
result, such as complex events or other decision logic. Once defined, events can be bound to
actions using rules to create event-driven applications, with simple facilities for relaying event
data to invoked actions. Such applications are cloud-native, in the sense that events can arrive
and be processed by actions anywhere in the cloud, and actions are elastically auto-scaled to
match the event load.

The resulting programming model of OpenWhisk offers several attractive advantages to
developers, in addition to polyglot programming and auto-scaling. Developers do not need to
manage the location of their code (hence the term “serverless”), its life-cycle or its resource
allocation – OpenWhisk uses a default (but customizable) resource allocation for each action.
Actions are time-limited to keep consistent with the original serverless model from AWS, but
time-limit is configurable.

The architecture of OpenWhisk consists of the components shown in Figure 12.

Figure 12: OpenWhisk Architecture.

The components of the OW architecture are introduced as follows:

• NGINX is an optional reverse proxy, used for load-balancing controllers and for SSL
termination.

• CouchDB is a database used for storing the assets created by users – actions, triggers,
rules, packages and records of action activations.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

21

• Controller is a management logic of OW. It implements the OW REST API, and dispatches
actions for execution at invokers in response to events.

• Kafka is a message bus used to distribute messages from controllers to invokers in a cloud
setting.

• Invoker is a “worker” of OW. It executes actions using IaaS or cluster facilities. By default,
an invoker uses Docker containers for running actions, but there are variations that use
Kubernetes and other facilities.

OW has a simple interface consisting of a REST API and a CLI (wsk command) which wraps the
REST API. It allows creating actions and invoking them, creating event triggers from event
feeds of actual events, binding event triggers to actions via rules, and several secondary
operations. OW programming model is documented in detail in [21].

5.2 Lithops

Lithops [7] is a rebranding of the former project of PyWren [22], which is a system that was
built at UC Berkeley’s RISELAB to enable highly scalable execution of existing Python functions
on the cloud using the serverless platform. It started on AWS Lambda, the serverless platform
of AWS Cloud, and later it was converted [23] to use IBM’s Cloud Functions, based on Apache
OpenWhisk.

Lithops’s programming interface is based on Map/Reduce. The developer writes a client
program that during runtime, creates an executor, which issues highly parallel computations
as map and reduce operations in its API. These operations are executed using a set of concurrent
serverless functions/actions. Each action’s environment is prepared to include the
dependencies needed to execute the map or reduce function, including dependencies of the
function code and of Lithops itself. The functions used in map and reduce, as well as the input
and output datasets, are shared between the client and the actions via object storage.

The current basic API for map and reduce in Lithops is as following [23]:

• executor.map(func, dataset)

• executor.map_reduce(map_func, dataset, reduce_func)

Both operations perform map first, which applies func (map_func in reduce) to all elements of
the dataset. For reduce, it later applies a reduce function to the dataset resulting from map.
The reduce function has an internal accumulator carrying results from one computation to the
next, ending with a single final result. Figure 13 demonstrates the operation of a map
computation in PyWren/Lithops, involving the client, IBM Cloud Functions (OpenWhisk) and
object storage, in an IBM Cloud setup.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

22

Figure 13: Execution of a PyWren map operation.

5.3 COMPSs

Deliverable D2.1 [24] provides a detailed description of COMPSs.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

23

6 References

[1] CLASS Consortium, “CLASS: Edge&CLoud Computation: A Highly Distributed Software
Architecture for Big Data AnalyticS,” Baercelona, 2017.

[2] E. Hadad, D5.1 Analytics Requirements, 2018.

[3] E. Hadad, “D5.3 Initial Release of CLASS Big-Data Analytics Layer,” CLASS, 2019.

[4] E. Hadad, “D5.4 Final Release of CLASS Big-Data Analytics Layer,” CLASS, 2020.

[5] CLASS Consortium, “D1.6 CLASS Use Case Evaluation,” 2021.

[6] E. Kartsakli, “D2.7 Final Release of the CLASS software architecture,” CLASS
Consoirtium, 2021.

[7] Lithops Community, “Lithops - Lightweight Optimized Processing,” [Online]. Available:
https://github.com/lithops-cloud/lithops. [Accessed June 2020].

[8] D. Amendola, “D1.4 - Final Release Of The Smart City Use Case,” CLASS, 2020.

[9] B. Szyk, “Stopping Distance Calculator,” [Online]. Available:
https://www.omnicalculator.com/physics/stopping-distance. [Accessed May 2021].

[10] CloudButton Consortium, “CloudButton - Serverless Data Analytics Platform,” [Online].
Available: https://cloudbutton.eu/. [Accessed May 2021].

[11] MinIO, Inc., “MinIO - Object Storage for AI,” [Online]. Available: https://min.io/.
[Accessed 3 2019].

[12] VMware, inc, “RabbitMQ - Messaging That Just Works,” [Online]. Available:
https://www.rabbitmq.com/. [Accessed May 2021].

[13] Apache OpenWhisk, “Apache OpenWhisk is a serverless, open source cloud platform,”
Apache Foundation, [Online]. Available: http://openwhisk.apache.org/. [Accessed 21
June 2018].

[14] Google inc., “Protocol Buffers | Google Developers,” [Online]. Available:
https://developers.google.com/protocol-buffers. [Accessed May 2021].

[15] E. Hadad, “D3.2 - First Release of Edge Analytics Platform Agent,” CLASS, 2019.

[16] E. Hadad, “D3.3 - Final Release Of CLASS Analytics Platform Agent,” CLASS, 2020.

[17] J. Beswick, “New for AWS Lambda – Predictable start-up times with Provisioned
Concurrency,” 4 December 2019. [Online]. Available:
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-start-up-
times-with-provisioned-concurrency/. [Accessed 2 2020].

[18] DataBench consortium, “DataBench - Big Data Benchmarking,” [Online]. Available:
https://www.databench.eu/. [Accessed May 2021].

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

24

[19] E. Hadad, “owperf - A performance evaluation tool for Apache OpenWhisk,” IBM
Research, 2019. [Online]. Available: https://github.com/IBM/owperf. [Accessed 3
2019].

[20] DataBench Consortium, “DataBench Toolbox,” [Online]. Available:
https://databench.ijs.si/. [Accessed March 2021].

[21] Apache OpenWhisk, “incubator-openwhisk/docs at master · apache/incubator-
openwhisk · GitHub,” [Online]. Available: https://github.com/apache/incubator-
openwhisk/tree/master/docs#readme. [Accessed 21 June 2018].

[22] “pywren -- run your python code on thousands of cores - pywren,” RiseLab, UC
Berkeley, [Online]. Available: http://pywren.io. [Accessed 21 June 2018].

[23] G. Vernik and J. Sampe, “Process large data sets at massive scale with PyWren over
IBM Cloud Functions - IBM Cloud Blog,” IBM, [Online]. Available:
https://www.ibm.com/blogs/bluemix/2018/04/process-large-data-sets-massive-
scale-pywren-ibm-cloud-functions/. [Accessed 21 June 2018].

[24] E. Quinones, “D2.1 – CLASS software architecture requirements and integration plan,”
CLASS, 2018.

[25] “NVIDIA TensorRT | NVIDIA Developer,” [Online]. Available:
https://developer.nvidia.com/tensorrt.

[26] M. Corredoira, D1.2 First release of the smart city use cases, 2019.

[27] J. Redmon, “YOLO: Real-Time Object Detection,” [Online]. Available:
https://pjreddie.com/darknet/yolo/.

[28] Barcelona Supercomputing Center, “Application development guide. COMPSs user
manual,” 9 November 2018. [Online]. Available:
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Dev
elopment.pdf.

[29] Barcelona Supercomputing Center, “Application execution guide. COMPSs User
Manual,” 9 November 2018. [Online]. Available:
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Exec
.pdf.

[30] Linux Foundation, “Production-Grade Container Orchestration - Kubernetes,” [Online].
Available: https://kubernetes.io. [Accessed 3 2019].

[31] Docker Inc, “Enterprise Application Container Platform - Docker,” [Online]. Available:
https://www.docker.com/. [Accessed 3 2019].

[32] Barcelona Supercomputing Center, “COMP Superscalar - BSC-CNS,” [Online]. Available:
https://www.bsc.es/research-and-development/software-and-apps/software-
list/comp-superscalar/. [Accessed 3 2019].

[33] Barcelona Supercomputing Center, “dataClay - BSC-CNS,” [Online]. Available:
https://www.bsc.es/research-and-development/software-and-apps/software-
list/dataclay. [Accessed 3 2019].

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

25

[34] E. Quinones, “D2.4 First Release Of The CLASS Software Architecture,” 2019.

[35] M. Corredoira, “D1.2 Final Release Of The Smart City Use Cases,” 2019.

[36] D. Breitgand, “Lean OpenWhisk: Open Source FaaS for Edge Computing,” 7 2018.
[Online]. Available: https://medium.com/openwhisk/lean-openwhisk-open-source-
faas-for-edge-computing-fb823c6bbb9b. [Accessed 3 2019].

[37] IBM, “OpenWhisk REST API,” [Online]. Available:
https://openwhisk.ng.bluemix.net/api/v1/docs/index.html?url=/api/v1/api-docs#/.
[Accessed 3 2019].

[38] OpenWhisk Community, “[OpenWhisk] Documenation,” [Online]. Available:
https://openwhisk.apache.org/documentation.html. [Accessed 3 2019].

[39] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes and J.
Labarta, “PyCOMPSs: Parallel computational workflows in Python,” IJHPCA, vol. 31, no.
1, pp. 66-82, 2017.

[40] OpenWhisk Community, “Creating triggers and rules,” [Online]. Available:
https://github.com/apache/incubator-
openwhisk/blob/master/docs/triggers_rules.md. [Accessed 3 2019].

[41] Wikipedia, “Network Time Protocol,” [Online]. Available:
https://en.wikipedia.org/wiki/Network_Time_Protocol. [Accessed 3 2019].

[42] R. Cavicchioli, “D3.4 First release of the real-time analysis methods and tools on the
edge,” 2019.

[43] OpenWhisk Community, “Setting up OpenWhisk on Ubuntu server(s),” [Online].
Available: https://github.com/apache/incubator-
openwhisk/blob/master/tools/ubuntu-setup/README.md. [Accessed 3 2019].

[44] MASERATI, BSC, “D1.2 - Final release of the smart city use cases”.

[45] ATOS, “D4.1. - Cloud requirement specification and definition,” 2018.

[46] OpenWhisk Community, “Apache OpenWhisk package that can be used to create
periodic, time-based alarms,” [Online]. Available:
https://github.com/apache/incubator-openwhisk-package-alarms. [Accessed 3 2019].

[47] E. Hadad, “erezh16/express: A serverless platform with predictability enhancements -
based on OpenWhisk,” IBM Research, [Online]. Available:
https://github.com/erezh16/express. [Accessed 3 2019].

[48] IBM Corp., “IBM Cloud Object Storage - Overview,” [Online]. Available:
https://www.ibm.com/cloud/object-storage. [Accessed 3 2019].

[49] N. Mammadli and J. Álvarez , “D2.5 – Final release of Spark and COMPSs integrated in
CLASS architecture,” CLASS, 2020.

[50] M. Shilkov, “Cold Starts in AWS Lambda,” 26 September 2019. [Online]. Available:
https://mikhail.io/serverless/coldstarts/aws/.

D5.5 Final Release Of CLASS Big-Data Analy tics Lay er
Version 1.0

26

[51] H2 Database, “H2 Performance Comparison,” [Online]. Available:
http://www.h2database.com/html/performance.html. [Accessed 2 2020].

[52] Knative Community, “Knative,” [Online]. Available: https://knative.dev/. [Accessed
March 2020].

[53] Amazon Web Services, “AWS Lambda Execution Context,” [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html. [Accessed 2
2020].

[54] M. Groves, “Lazy Initializing Within Azure Functions,” 15 September 2017. [Online].
Available: https://blog.couchbase.com/azure-functions-lazy-initialization-couchbase-
server/.

[55] J. Daly, “Lambda Warmer: Optimize AWS Lambda Function Cold Starts,” 14 July 2018.
[Online]. Available: https://www.jeremydaly.com/lambda-warmer-optimize-aws-
lambda-function-cold-starts/.

[56] iguazio, inc, “Nuclio: Serverless Platform for Automated Data Science,” [Online].
Available: https://nuclio.io/. [Accessed 2 2020].

[57] A. Singhvi, K. Houck, A. Balasubramanian, M. D. Shaikh, S. Venkataraman and A. Akella,
“Archipelago: A Scalable Low-Latency Serverless Platform,” 22 November 2019.
[Online]. Available: https://arxiv.org/pdf/1911.09849.pdf.

[58] C. W. X. C. L. J. S.-S. J. M. F. J. E. G. J. M. H. A. T. Vikram Sreekanti, “Cloudburst: Stateful
Functions-as-a-Service,” 27 January 2020. [Online]. Available:
https://arxiv.org/pdf/2001.04592.pdf.

[59] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya and V. Hilt, “SAND:
Towards High-Performance Serverless Computin,” in USENIX Annual Technical
Conference, Boston, MA, 2018.

[60] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak and V. Sukhomlinov, “Agile Cold
Starts for Scalable Serverless,” in HotCloud'19, Renton, WA, 2019.

	1 Executive Summary
	2 Code Updates
	2.1 Lithops
	2.1.1 A Practical Timing Goal
	2.1.2 Lithops Operation
	2.1.3 Optimizing Lithops

	3 Evaluation
	3.1 Qualitative Evaluation
	3.1.1 Inclusive, Event-Driven Programming Model Featuring Multiple Analytics API
	3.1.2 Predictable Computation
	3.1.3 Cloud and Edge Operation
	3.1.4 Data Backend Connectivity

	3.2 Quantitative Evaluation
	3.2.1 Evaluation Method
	3.2.2 Evaluation Results
	3.2.2.1 Total End-To-End Latency
	3.2.2.2 OpenWhisk Overhead

	4 Impact, Collaboration and Demonstrations
	4.1 DataBench Support
	4.2 EXPRESS
	4.3 Lithops

	5 Product Glossary
	5.1 Apache OpenWhisk
	5.2 Lithops
	5.3 COMPSs

	6 References

